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Warning

This version of the website contains UNPUBLISHED contents. Please do not share it
externally!

Copyright © 2013 – 2022, AdaCore
This book is published under a CC BY-SA license, which means that you can copy, redis-
tribute, remix, transform, and build upon the content for any purpose, even commercially,
as long as you give appropriate credit, provide a link to the license, and indicate if changes
were made. If you remix, transform, or build upon the material, you must distribute your
contributions under the same license as the original. You can find license details on this
page1

This document will present the Ada language using terminology and examples that are
familiar to developers that understand the C++ or Java languages.
This document was prepared by Quentin Ochem, with contributions and review fromRichard
Kenner, Albert Lee, and Ben Brosgol.

Note

The code examples in this course use an 80-column limit, which is a typical limit for Ada
code. Note that, on devices with a small screen size, some code examples might be
difficult to read.

Note

Each code example from this book has an associated "code block metadata", which
contains the name of the "project" and an MD5 hash value. This information is used to
identify a single code example.
You can find all code examples in a zip file, which you can download from the learn
website2. The directory structure in the zip file is based on the code block metadata.
For example, if you're searching for a code example with this metadata:

• Project: Courses.Intro_To_Ada.Imperative_Language.Greet
• MD5: cba89a34b87c9dfa71533d982d05e6ab

you will find it in this directory:
projects/Courses/Intro_To_Ada/Imperative_Language/Greet/
cba89a34b87c9dfa71533d982d05e6ab/

In order to use this code example, just follow these steps:
1. Unpack the zip file;
2. Go to target directory;

1 http://creativecommons.org/licenses/by-sa/4.0
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3. Start GNAT Studio on this directory;
4. Build (or compile) the project;
5. Run the application (if a main procedure is available in the project).

2 https://learn.adacore.com/zip/learning-ada_code.zip
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CHAPTER

ONE

PREFACE

Nowadays it seems like talking about programming languages is a bit passé. The technical
wars of the past decade have subsided and today we see a variety of high-level and well-
established languages offering functionality that can meet the needs of any programmer.
Python, Java, C++, C#, and Visual Basic are recent examples. Indeed, these languages
make it easier to write code very quickly, are very flexible, offer features with highly dy-
namic behavior, and some even allow compilers to deduce the developer's probable intent.
Why, then, talk about yet another language? Well, by addressing the general programming
market, the aforementioned languages have become poorly suited for working within the
domain of high-integrity systems. In highly reliable, secure and safe applications such as
those found in and around airplanes, rockets, satellites, trains, and in any device whose
failure could jeopardize human life or critical assets, the programming languages usedmust
support the high standard of software engineering necessary to maintain the integrity of
the system.
The concept of verification — the practice of showing that the system behaves and per-
forms as intended — is key in such environments. Verification can be accomplished by
some combination of review, testing, static analysis, and formal proof techniques. The in-
creasing reliance on software and increasing complexity of today's systems has made this
task more difficult. Technologies and practices that might have been perfectly acceptable
ten or fifteen years ago are insufficient today. Thankfully, the state of the art in analysis
and proof tools and techniques has also advanced.
The latest revisions of the Ada language, Ada 2005 and Ada 2012, make enhanced software
integrity possible. From its inception in the 1980s, Ada was designed to meet the require-
ments of high-integrity systems, and continues to be well-suited for the implementation
of critical embedded or native applications. And it has been receiving increased attention
recently. Every language revision has enhanced expressiveness in many areas. Ada 2012,
in particular, has introduced new features for contract-based programming that are valu-
able to any project where verification is part of the engineering lifecycle. Along with these
language enhancements, Ada compiler and tool technology has also kept pace with gen-
eral computing developments over the past few years. Ada development environments
are available on a wide range of platforms and are being used for the most demanding
applications.
It is no secret that we at AdaCore are very enthusiastic about Ada, but we will not claim that
Ada is always the solution; Ada is no more a silver bullet than any other language. In some
domains other languages make sense because of the availability of particular libraries or
development frameworks. For example, C++ and Java are considered good choices for
desktop programs or applications where a shortened time to market is a major objective.
Other areas, such as website programming or system administration, tend to rely on differ-
ent formalisms such as scripting and interpreted languages. The key is to select the proper
technical approach, in terms of the language and tools, to meet the requirements. Ada's
strength is in areas where reliability is paramount.
Learning a new language shouldn't be complicated. Programming paradigms have not
evolved much since object oriented programming gained a foothold, and the same
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paradigms are present one way or another in many widely used languages. This docu-
ment will thus give you an overview of the Ada language using analogies to C++ and Java
— these are the languages you're already likely to know. No prior knowledge of Ada is
assumed. If you are working on an Ada project now and need more background, if you
are interested in learning to program in Ada, or if you need to perform an assessment of
possible languages to be used for a new development, this guide is for you.

4 Chapter 1. Preface



CHAPTER

TWO

BASICS

Ada implements the vast majority of programming concepts that you're accustomed to
in C++ and Java: classes, inheritance, templates (generics), etc. Its syntax might seem
peculiar, though. It's not derived from the popular C style of notation with its ample use
of brackets; rather, it uses a more expository syntax coming from Pascal. In many ways,
Ada is a simpler language — its syntax favors making it easier to conceptualize and read
program code, rather than making it faster to write in a cleverly condensed manner. For
example, full words like begin and end are used in place of curly braces. Conditions are
written using if, then, elsif, else, and end if. Ada's assignment operator does not
double as an expression, smoothly eliminating any frustration that could be caused by =
being used where == should be.
All languages provide one or more ways to express comments. In Ada, two consecutive
hyphens -- mark the start of a comment that continues to the end of the line. This is
exactly the same as using // for comments in C++ and Java. There is no equivalent of /*
... /* block comments in Ada; use multiple -- lines instead.
Ada compilers are stricter with type and range checking than most C++ and Java program-
mers are used to. Most beginning Ada programmers encounter a variety of warnings and
error messages when coding more creatively, but this helps detect problems and vulnera-
bilities at compile time — early on in the development cycle. In addition, dynamic checks
(such as array bounds checks) provide verification that could not be done at compile time.
Dynamic checks are performed at run time, similar to what is done in Java.
Ada identifiers and reserved words are case insensitive. The identifiers VAR, var and VaR are
treated as the same; likewise begin, BEGIN, Begin, etc. Language-specific characters, such
as accents, Greek or Russian letters, and Asian alphabets, are acceptable to use. Identifiers
may include letters, digits, and underscores, but must always start with a letter. There are
73 reserved keywords in Ada that may not be used as identifiers, and these are:

5
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abort else null select
abs elsif of separate
abstract end or some
accept entry others subtype
access exception out synchronized
aliased exit overriding tagged
all for package task
and function pragma terminate
array generic private then
at goto procedure type
begin if protected until
body in raise use
case interface range when
constant is record while
declare limited rem with
delay loop renames xor
delta mod requeue
digits new return
do not reverse

Ada is designed to be portable. Ada compilers must follow a precisely defined interna-
tional (ISO) standard language specification with clearly documented areas of vendor free-
dom where the behavior depends on the implementation. It's possible, then, to write an
implementation-independent application in Ada and to make sure it will have the same
effect across platforms and compilers.
Ada is truly a general purpose, multiple paradigm language that allows the programmer to
employ or avoid features like run-time contract checking, tasking, object oriented program-
ming, and generics. Efficiently programmed Ada is employed in device drivers, interrupt
handlers, and other low-level functions. It may be found today in devices with tight limits
on processing speed, memory, and power consumption. But the language is also used for
programming larger interconnected systems running on workstations, servers, and super-
computers.

6 Chapter 2. Basics
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THREE

COMPILATION UNIT STRUCTURE

C++ programming style usually promotes the use of two distinct files: header files used
to define specifications (.h*, .hxx, .hpp), and implementation files which contain the ex-
ecutable code (.c, .cxx, .cpp). However, the distinction between specification and imple-
mentation is not enforced by the compiler and may need to be worked around in order to
implement, for example, inlining or templates.
Java compilers expect both the implementation and specification to be in the same .java file.
(Yes, design patterns allow using interfaces to separate specification from implementation
to a certain extent, but this is outside of the scope of this description.)
Ada is superficially similar to the C++ case: Ada compilation units are generally split into
two parts, the specification and the body. However, what goes into those files is more
predictable for both the compiler and for the programmer. With GNAT, compilation units
are stored in files with a .ads extension for specifications and with a .adb extension for
implementations.
Without further ado, we present the famous "Hello World" in three languages:
[Ada]

with Ada.Text_IO;
use Ada.Text_IO;

procedure Main is
begin

Put_Line ("Hello World");
end Main;

[C++]

#include <iostream>
using namespace std;

int main(int argc, const char* argv[]) {
cout << "Hello World" << endl;

}

[Java]

public class Main {
public static void main(String [] argv) {

System.out.println ("Hello World");
}

}

The first line of Ada we see is the with clause, declaring that the unit (in this case, the
Main subprogram) will require the services of the package Ada.Text_IO. This is different
from how #include works in C++ in that it does not, in a logical sense, copy/paste the
code of Ada.Text_IO into Main. The with clause directs the compiler to make the public

7
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interface of the Ada.Text_IO package visible to code in the unit (here Main) containing
the with clause. Note that this construct does not have a direct analog in Java, where the
entire CLASSPATH is always accessible. Also, the name Main for the main subprogram was
chosen for consistency with C++ and Java style but in Ada the name can be whatever the
programmer chooses.
The use clause is the equivalent of using namespace in C++, or import in Java (though
it wasn't necessary to use import in the Java example above). It allows you to omit the
full package name when referring to with'ed units. Without the use clause, any reference
to Ada.Text_IO items would have had to be fully qualified with the package name. The
Put_Line line would then have read:

Ada.Text_IO.Put_Line ("Hello World");

The word "package" has different meanings in Ada and Java. In Java, a package is used as
a namespace for classes. In Ada, it's often a compilation unit. As a result Ada tends to have
many more packages than Java. Ada package specifications ("package specs" for short)
have the following structure:

package Package_Name is

-- public declarations

private

-- private declarations

end Package_Name;

The implementation in a package body (written in a .adb file) has the structure:

package body Package_Name is

-- implementation

end Package_Name;

The private reserved word is used to mark the start of the private portion of a package
spec. By splitting the package spec into private and public parts, it is possible to make
an entity available for use while hiding its implementation. For instance, a common use is
declaring a record (Ada's struct) whose fields are only visible to its package and not to
the caller. This allows the caller to refer to objects of that type, but not to change any of its
contents directly.
The package body contains implementation code, and is only accessible to outside code
through declarations in the package spec.
An entity declared in the private part of a package in Ada is roughly equivalent to a protected
member of a C++ or Java class. An entity declared in the body of an Ada package is roughly
equivalent to a private member of a C++ or Java class.

8 Chapter 3. Compilation Unit Structure



CHAPTER

FOUR

STATEMENTS, DECLARATIONS, AND CONTROL
STRUCTURES

4.1 Statements and Declarations

The following code samples are all equivalent, and illustrate the use of comments and
working with integer variables:
[Ada]

--
-- Ada program to declare and modify Integers
--
procedure Main is

-- Variable declarations
A, B : Integer := 0;
C : Integer := 100;
D : Integer;

begin
-- Ada uses a regular assignment statement for incrementation.
A := A + 1;

-- Regular addition
D := A + B + C;

end Main;

[C++]

/*
* C++ program to declare and modify ints
*/
int main(int argc, const char* argv[]) {

// Variable declarations
int a = 0, b = 0, c = 100, d;

// C++ shorthand for incrementation
a++;

// Regular addition
d = a + b + c;

}

[Java]

/*
* Java program to declare and modify ints
*/
public class Main {

(continues on next page)
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(continued from previous page)
public static void main(String [] argv) {

// Variable declarations
int a = 0, b = 0, c = 100, d;

// Java shorthand for incrementation
a++;

// Regular addition
d = a + b + c;

}
}

Statements are terminated by semicolons in all three languages. In Ada, blocks of code
are surrounded by the reserved words begin and end rather than by curly braces. We can
use both multi-line and single-line comment styles in the C++ and Java code, and only
single-line comments in the Ada code.
Ada requires variable declarations to be made in a specific area called the declarative part,
seen here before the begin keyword. Variable declarations start with the identifier in Ada,
as opposed to starting with the type as in C++ and Java (also note Ada's use of the :
separator). Specifying initializers is different as well: in Ada an initialization expression can
apply to multiple variables (but will be evaluated separately for each), whereas in C++ and
Java each variable is initialized individually. In all three languages, if you use a function as
an initializer and that function returns different values on every invocation, each variable
will get initialized to a different value.
Let's move on to the imperative statements. Ada does not provide ++ or -- shorthand
expressions for increment/decrement operations; it is necessary to use a full assignment
statement. The := symbol is used in Ada to perform value assignment. Unlike C++'s and
Java's = symbol, := can not be used as part of an expression. So, a statement like A := B
:= C; doesn't make sense to an Ada compiler, and neither does a clause like if A := B
then .... Both are compile-time errors.
You can nest a block of code within an outer block if you want to create an inner scope:

with Ada.Text_IO; use Ada.Text_IO;

procedure Main is
begin

Put_Line ("Before the inner block");

declare
Alpha : Integer := 0;

begin
Alpha := Alpha + 1;
Put_Line ("Now inside the inner block");

end;

Put_Line ("After the inner block");
end Main;

It is OK to have an empty declarative part or to omit the declarative part entirely — just
start the inner block with begin if you have no declarations to make. However it is not OK
to have an empty sequence of statements. You must at least provide a null; statement,
which does nothing and indicates that the omission of statements is intentional.

10 Chapter 4. Statements, Declarations, and Control Structures
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4.2 Conditions

The use of the if statement:
[Ada]

if Variable > 0 then
Put_Line (" > 0 ");

elsif Variable < 0 then
Put_Line (" < 0 ");

else
Put_Line (" = 0 ");

end if;

[C++]

if (Variable > 0)
cout << " > 0 " << endl;

else if (Variable < 0)
cout << " < 0 " << endl;

else
cout << " = 0 " << endl;

[Java]

if (Variable > 0)
System.out.println (" > 0 ");

else if (Variable < 0)
System.out.println (" < 0 ");

else
System.out.println (" = 0 ");

In Ada, everything that appears between the if and then keywords is the conditional ex-
pression — no parentheses required. Comparison operators are the same, except for equal-
ity (=) and inequality (/=). The English words not, and, and or replace the symbols !, &,
and |, respectively, for performing boolean operations.
It's more customary to use && and || in C++ and Java than & and | when writing boolean
expressions. The difference is that && and || are short-circuit operators, which evaluate
terms only as necessary, and & and | will unconditionally evaluate all terms. In Ada, and
and or will evaluate all terms; and then and or else direct the compiler to employ short
circuit evaluation.
Here are what switch/case statements look like:
[Ada]

case Variable is
when 0 =>

Put_Line ("Zero");
when 1 .. 9 =>

Put_Line ("Positive Digit");
when 10 | 12 | 14 | 16 | 18 =>

Put_Line ("Even Number between 10 and 18");
when others =>

Put_Line ("Something else");
end case;

[C++]

switch (Variable) {
case 0:

(continues on next page)

4.2. Conditions 11
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(continued from previous page)
cout << "Zero" << endl;
break;

case 1: case 2: case 3: case 4: case 5:
case 6: case 7: case 8: case 9:

cout << "Positive Digit" << endl;
break;

case 10: case 12: case 14: case 16: case 18:
cout << "Even Number between 10 and 18" << endl;
break;

default:
cout << "Something else";

}

[Java]

switch (Variable) {
case 0:

System.out.println ("Zero");
break;

case 1: case 2: case 3: case 4: case 5:
case 6: case 7: case 8: case 9:

System.out.println ("Positive Digit");
break;

case 10: case 12: case 14: case 16: case 18:
System.out.println ("Even Number between 10 and 18");
break;

default:
System.out.println ("Something else");

}

In Ada, the case and end case lines surround the whole case statement, and each case
starts with when. So, when programming in Ada, replace switch with case, and replace
case with when.
Case statements in Ada require the use of discrete types (integers or enumeration types),
and require all possible cases to be covered by when statements. If not all the cases are han-
dled, or if duplicate cases exist, the program will not compile. The default case, default:
in C++ and Java, can be specified using when others => in Ada.
In Ada, the break instruction is implicit and program execution will never fall through to
subsequent cases. In order to combine cases, you can specify ranges using .. and enu-
merate disjoint values using | which neatly replaces the multiple case statements seen in
the C++ and Java versions.

4.3 Loops

In Ada, loops always start with the loop reserved word and end with end loop. To leave
the loop, use exit— the C++ and Java equivalent being break. This statement can specify
a terminating condition using the exit when syntax. The loop opening the block can be
preceded by a while or a for.
The while loop is the simplest one, and is very similar across all three languages:
[Ada]

while Variable < 10_000 loop
Variable := Variable * 2;

end loop;

12 Chapter 4. Statements, Declarations, and Control Structures
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[C++]

while (Variable < 10000) {
Variable = Variable * 2;

}

[Java]

while (Variable < 10000) {
Variable = Variable * 2;

}

Ada's for loop, however, is quite different from that in C++ and Java. It always increments
or decrements a loop index within a discrete range. The loop index (or "loop parameter" in
Ada parlance) is local to the scope of the loop and is implicitly incremented or decremented
at each iteration of the loop statements; the program cannot directly modify its value.
The type of the loop parameter is derived from the range. The range is always given in
ascending order even if the loop iterates in descending order. If the starting bound is greater
than the ending bound, the interval is considered to be empty and the loop contents will
not be executed. To specify a loop iteration in decreasing order, use the reverse reserved
word. Here are examples of loops going in both directions:
[Ada]

-- Outputs 0, 1, 2, ..., 9
for Variable in 0 .. 9 loop

Put_Line (Integer'Image (Variable));
end loop;

-- Outputs 9, 8, 7, ..., 0
for Variable in reverse 0 .. 9 loop

Put_Line (Integer'Image (Variable));
end loop;

[C++]

// Outputs 0, 1, 2, ..., 9
for (int Variable = 0; Variable <= 9; Variable++) {

cout << Variable << endl;
}

// Outputs 9, 8, 7, ..., 0
for (int Variable = 9; Variable >=0; Variable--) {

cout << Variable << endl;
}

[Java]

// Outputs 0, 1, 2, ..., 9
for (int Variable = 0; Variable <= 9; Variable++) {

System.out.println (Variable);
}

// Outputs 9, 8, 7, ..., 0
for (int Variable = 9; Variable >= 0; Variable--) {

System.out.println (Variable);
}

Ada uses the Integer type's 'Image attribute to convert a numerical value to a String.
There is no implicit conversion between Integer and String as there is in C++ and Java.
We'll have a more in-depth look at such attributes later on.
It's easy to express iteration over the contents of a container (for instance, an array, a list,

4.3. Loops 13
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or a map) in Ada and Java. For example, assuming that Int_List is defined as an array of
Integer values, you can use:
[Ada]

for I of Int_List loop
Put_Line (Integer'Image (I));

end loop;

[Java]

for (int i : Int_List) {
System.out.println (i);

}

14 Chapter 4. Statements, Declarations, and Control Structures



CHAPTER

FIVE

TYPE SYSTEM

5.1 Strong Typing

One of the main characteristics of Ada is its strong typing (i.e., relative absence of implicit
type conversions). This may take some getting used to. For example, you can't divide an
integer by a float. You need to perform the division operation using values of the same type,
so one value must be explicitly converted to match the type of the other (in this case the
more likely conversion is from integer to float). Ada is designed to guarantee that what's
done by the program is what's meant by the programmer, leaving as little room for compiler
interpretation as possible. Let's have a look at the following example:
[Ada]

procedure Strong_Typing is
Alpha : Integer := 1;
Beta : Integer := 10;
Result : Float;

begin
Result := Float (Alpha) / Float (Beta);

end Strong_Typing;

[C++]

void weakTyping () {
int alpha = 1;
int beta = 10;
float result;

result = alpha / beta;
}

[Java]

void weakTyping () {
int alpha = 1;
int beta = 10;
float result;

result = alpha / beta;
}

Are the three programs above equivalent? It may seem like Ada is just adding extra com-
plexity by forcing you to make the conversion from Integer to Float explicit. In fact it signif-
icantly changes the behavior of the computation. While the Ada code performs a floating
point operation 1.0 / 10.0 and stores 0.1 in Result, the C++ and Java versions instead
store 0.0 in result. This is because the C++ and Java versions perform an integer opera-
tion between two integer variables: 1 / 10 is 0. The result of the integer division is then
converted to a float and stored. Errors of this sort can be very hard to locate in complex
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pieces of code, and systematic specification of how the operation should be interpreted
helps to avoid this class of errors. If an integer division was actually intended in the Ada
case, it is still necessary to explicitly convert the final result to Float:

-- Perform an Integer division then convert to Float
Result := Float (Alpha / Beta);

In Ada, a floating point literal must be written with both an integral and decimal part. 10 is
not a valid literal for a floating point value, while 10.0 is.

5.2 Language-Defined Types

The principal scalar types predefined by Ada are Integer, Float, Boolean, and Character.
These correspond to int, float, bool/boolean, and char, respectively. The names for
these types are not reserved words; they are regular identifiers.

5.3 Application-Defined Types

Ada's type system encourages programmers to think about data at a high level of abstrac-
tion. The compiler will at times output a simple efficient machine instruction for a full line of
source code (and some instructions can be eliminated entirely). The careful programmer's
concern that the operation really makes sense in the real world would be satisfied, and so
would the programmer's concern about performance.
The next example below defines two different metrics: area and distance. Mixing these
two metrics must be done with great care, as certain operations do not make sense, like
adding an area to a distance. Others require knowledge of the expected semantics; for
example, multiplying two distances. To help avoid errors, Ada requires that each of the
binary operators +, -, *, and / for integer and floating-point types take operands of the
same type and return a value of that type.

procedure Main is
type Distance is new Float;
type Area is new Float;

D1 : Distance := 2.0;
D2 : Distance := 3.0;
A : Area;

begin
D1 := D1 + D2; -- OK
D1 := D1 + A; -- NOT OK: incompatible types for "+" operator
A := D1 * D2; -- NOT OK: incompatible types for ":=" assignment
A := Area (D1 * D2); -- OK

end Main;

Even though the Distance and Area types above are just Floats, the compiler does not
allow arbitrary mixing of values of these different types. An explicit conversion (which does
not necessarily mean any additional object code) is necessary.
The predefined Ada rules are not perfect; they admit some problematic cases (for example
multiplying two Distances yields a Distance) and prohibit some useful cases (for exam-
ple multiplying two Distances should deliver an Area). These situations can be handled
through other mechanisms. A predefined operation can be identified as abstract to make
it unavailable; overloading can be used to give new interpretations to existing operator
symbols, for example allowing an operator to return a value from a type different from its
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operands; and more generally, GNAT has introduced a facility that helps perform dimen-
sionality checking.
Ada enumerations work similarly to C++ and Java's enums.
[Ada]

type Day is
(Monday,
Tuesday,
Wednesday,
Thursday,
Friday,
Saturday,
Sunday);

[C++]

enum Day {
Monday,
Tuesday,
Wednesday,
Thursday,
Friday,
Saturday,
Sunday};

[Java]

enum Day {
Monday,
Tuesday,
Wednesday,
Thursday,
Friday,
Saturday,
Sunday}

But even though such enumerations may be implemented using a machine word, at the
language level Ada will not confuse the fact that Monday is a Day and is not an Integer.
You can compare a Day with another Day, though. To specify implementation details like
the numeric values that correspond with enumeration values in C++ you include them in
the original enum statement:
[C++]

enum Day {
Monday = 10,
Tuesday = 11,
Wednesday = 12,
Thursday = 13,
Friday = 14,
Saturday = 15,
Sunday = 16};

But in Ada you must use both a type definition for Day as well as a separate representation
clause for it like:
[Ada]

for Day use
(Monday => 10,
Tuesday => 11,

(continues on next page)
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(continued from previous page)
Wednesday => 12,
Thursday => 13,
Friday => 14,
Saturday => 15,
Sunday => 16);

5.4 Type Ranges

Contracts can be associated with types and variables, to refine values and define what are
considered valid values. Themost common kind of contract is a range constraint introduced
with the range reserved word, for example:

procedure Main is
type Grade is range 0 .. 100;

G1, G2 : Grade;
N : Integer;

begin
... -- Initialization of N
G1 := 80; -- OK
G1 := N; -- Illegal (type mismatch)
G1 := Grade (N); -- Legal, run-time range check
G2 := G1 + 10; -- Legal, run-time range check
G1 := (G1 + G2)/2; -- Legal, run-time range check

end Main;

In the above example, Grade is a new integer type associated with a range check. Range
checks are dynamic and are meant to enforce the property that no object of the given type
can have a value outside the specified range. In this example, the first assignment to G1
is correct and will not raise a run-time exceprion. Assigning N to G1 is illegal since Grade is
a different type than Integer. Converting N to Grade makes the assignment legal, and a
range check on the conversion confirms that the value is within 0 .. 100. Assigning G1+10
to G2 is legal since + for Grade returns a Grade (note that the literal 10 is interpreted as a
Grade value in this context), and again there is a range check.
The final assignment illustrates an interesting but subtle point. The subexpression G1 + G2
may be outside the range of Grade, but the final result will be in range. Nevertheless, de-
pending on the representation chosen for Grade, the addition may overflow. If the compiler
represents Grade values as signed 8-bit integers (i.e., machine numbers in the range -128
.. 127) then the sum G1+G2 may exceed 127, resulting in an integer overflow. To prevent
this, you can use explicit conversions and perform the computation in a sufficiently large
integer type, for example:

G1 := Grade ((Integer (G1) + Integer (G2)) / 2);

Range checks are useful for detecting errors as early as possible. However, there may
be some impact on performance. Modern compilers do know how to remove redundant
checks, and you can deactivate these checks altogether if you have sufficient confidence
that your code will function correctly.
Types can be derived from the representation of any other type. The new derived type can
be associated with new constraints and operations. Going back to the Day example, one
can write:

type Business_Day is new Day range Monday .. Friday;
type Weekend_Day is new Day range Saturday .. Sunday;
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Since these are new types, implicit conversions are not allowed. In this case, it's more
natural to create a new set of constraints for the same type, instead of making completely
new ones. This is the idea behind subtypes in Ada. A subtype is a type with optional
additional constraints. For example:

subtype Business_Day is Day range Monday .. Friday;
subtype Weekend_Day is Day range Saturday .. Sunday;
subtype Dice_Throw is Integer range 1 .. 6;

These declarations don't create new types, just new names for constrained ranges of their
base types.

5.5 Generalized Type Contracts: Subtype Predicates

Range checks are a special form of type contracts; a more general method is provided by
Ada subtype predicates, introduced in Ada 2012. A subtype predicate is a boolean expres-
sion defining conditions that are required for a given type or subtype. For example, the
Dice_Throw subtype shown above can be defined in the following way:

subtype Dice_Throw is Integer
with Dynamic_Predicate => Dice_Throw in 1 .. 6;

The clause beginning with with introduces an Ada aspect, which is additional information
provided for declared entities such as types and subtypes. The Dynamic_Predicate aspect
is the most general form. Within the predicate expression, the name of the (sub)type refers
to the current value of the (sub)type. The predicate is checked on assignment, parameter
passing, and in several other contexts. There is a Static_Predicate form which introduce
some optimization and constrains on the form of these predicates, outside of the scope of
this document.
Of course, predicates are useful beyond just expressing ranges. They can be used to repre-
sent types with arbitrary constraints, in particular types with discontinuities, for example:

type Not_Null is new Integer
with Dynamic_Predicate => Not_Null /= 0;

type Even is new Integer
with Dynamic_Predicate => Even mod 2 = 0;

5.6 Attributes

Attributes start with a single apostrophe ("tick"), and they allow you to query properties of,
and perform certain actions on, declared entities such as types, objects, and subprograms.
For example, you can determine the first and last bounds of scalar types, get the sizes
of objects and types, and convert values to and from strings. This section provides an
overview of how attributes work. For more information on the many attributes defined by
the language, you can refer directly to the Ada Language Reference Manual.
The 'Image and 'Value attributes allow you to transform a scalar value into a String and
vice-versa. For example:

declare
A : Integer := 99;

begin
Put_Line (Integer'Image (A));

(continues on next page)
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(continued from previous page)
A := Integer'Value ("99");

end;

Certain attributes are provided only for certain kinds of types. For example, the 'Val and
'Pos attributes for an enumeration type associates a discrete value with its position among
its peers. One circuitous way of moving to the next character of the ASCII table is:
[Ada]

declare
C : Character := 'a';

begin
C := Character'Val (Character'Pos (C) + 1);

end;

A more concise way to get the next value in Ada is to use the 'Succ attribute:

declare
C : Character := 'a';

begin
C := Character'Succ (C);

end;

You can get the previous value using the 'Pred attribute. Here is the equivalent in C++
and Java:
[C++]

char c = 'a';
c++;

[Java]

char c = 'a';
c++;

Other interesting examples are the 'First and 'Last attributes which, respectively, return
the first and last values of a scalar type. Using 32-bit integers, for instance, Integer'First
returns -231 and Integer'Last returns 231 - 1.

5.7 Arrays and Strings

C++ arrays are pointers with offsets, but the same is not the case for Ada and Java. Arrays
in the latter two languages are not interchangable with operations on pointers, and array
types are considered first-class citizens. Arrays in Ada have dedicated semantics such as
the availability of the array's boundaries at run-time. Therefore, unhandled array overflows
are impossible unless checks are suppressed. Any discrete type can serve as an array
index, and you can specify both the starting and ending bounds — the lower bound doesn't
necessarily have to be 0. Most of the time, array types need to be explicitly declared prior
to the declaration of an object of that array type.
Here's an example of declaring an array of 26 characters, initializing the values from 'a'
to 'z':
[Ada]

declare
type Arr_Type is array (Integer range <>) of Character;

(continues on next page)
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(continued from previous page)
Arr : Arr_Type (1 .. 26);
C : Character := 'a';

begin
for I in Arr'Range loop

Arr (I) := C;
C := Character'Succ (C);

end loop;
end;

[C++]

char Arr [26];
char C = 'a';

for (int I = 0; I < 26; ++I) {
Arr [I] = C;
C = C + 1;

}

[Java]

char [] Arr = new char [26];
char C = 'a';

for (int I = 0; I < Arr.length; ++I) {
Arr [I] = C;
C = C + 1;

}

In C++ and Java, only the size of the array is given during declaration. In Ada, array index
ranges are specified using two values of a discrete type. In this example, the array type
declaration specifies the use of Integer as the index type, but does not provide any con-
straints (use <>, pronounced box, to specify "no constraints"). The constraints are defined
in the object declaration to be 1 to 26, inclusive. Arrays have an attribute called 'Range. In
our example, Arr'Range can also be expressed as Arr'First .. Arr'Last; both expres-
sions will resolve to 1 .. 26. So the 'Range attribute supplies the bounds for our for loop.
There is no risk of stating either of the bounds incorrectly, as one might do in C++ where
I <= 26 may be specified as the end-of-loop condition.
As in C++, Ada Strings are arrays of Characters. The C++ or Java String class is the
equivalent of the Ada type Ada.Strings.Unbounded_String which offers additional capa-
bilities in exchange for some overhead. Ada strings, importantly, are not delimited with
the special character '\0' like they are in C++. It is not necessary because Ada uses the
array's bounds to determine where the string starts and stops.
Ada's predefined String type is very straighforward to use:

My_String : String (1 .. 26);

Unlike C++ and Java, Ada does not offer escape sequences such as '\n'. Instead, explicit
values from the ASCII package must be concatenated (via the concatenation operator, &).
Here for example, is how to initialize a line of text ending with a new line:

My_String : String := "This is a line with a end of line" & ASCII.LF;

You see here that no constraints are necessary for this variable definition. The initial value
given allows the automatic determination of My_String's bounds.
Ada offers high-level operations for copying, slicing, and assigning values to arrays. We'll
start with assignment. In C++ or Java, the assignment operator doesn't make a copy of the
value of an array, but only copies the address or reference to the target variable. In Ada,
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the actual array contents are duplicated. To get the above behavior, actual pointer types
would have to be defined and used.
[Ada]

declare
type Arr_Type is array (Integer range <>) of Integer;
A1 : Arr_Type (1 .. 2);
A2 : Arr_Type (1 .. 2);

begin
A1 (1) := 0;
A1 (2) := 1;

A2 := A1;
end;

[C++]

int A1 [2];
int A2 [2];

A1 [0] = 0;
A1 [1] = 1;

for (int i = 0; i < 2; ++i) {
A2 [i] = A1 [i];

}

[Java]

int [] A1 = new int [2];
int [] A2 = new int [2];

A1 [0] = 0;
A1 [1] = 1;

A2 = Arrays.copyOf(A1, A1.length);

In all of the examples above, the source and destination arrays must have precisely the
same number of elements. Ada allows you to easily specify a portion, or slice, of an array.
So you can write the following:
[Ada]

declare
type Arr_Type is array (Integer range <>) of Integer;
A1 : Arr_Type (1 .. 10);
A2 : Arr_Type (1 .. 5);

begin
A2 (1 .. 3) := A1 (4 .. 6);

end;

This assigns the 4th, 5th, and 6th elements of A1 into the 1st, 2nd, and 3rd elements of A2.
Note that only the length matters here: the values of the indexes don't have to be equal;
they slide automatically.
Ada also offers high level comparison operations which compare the contents of arrays as
opposed to their addresses:
[Ada]

declare
type Arr_Type is array (Integer range <>) of Integer;

(continues on next page)
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(continued from previous page)
A1 : Arr_Type (1 .. 2);
A2 : Arr_Type (1 .. 2);

begin
if A1 = A2 then

[C++]

int A1 [2];
int A2 [2];

bool eq = true;

for (int i = 0; i < 2; ++i) {
if (A1 [i] != A2 [i]) {

eq = false;
}

}

if (eq) {

[Java]

int [] A1 = new int [2];
int [] A2 = new int [2];

if (Arrays.equals (A1, A2)) {

You can assign to all the elements of an array in each language in different ways. In Ada,
the number of elements to assign can be determined by looking at the right-hand side,
the left-hand side, or both sides of the assignment. When bounds are known on the left-
hand side, it's possible to use the others expression to define a default value for all the
unspecified array elements. Therefore, you can write:

declare
type Arr_Type is array (Integer range <>) of Integer;
A1 : Arr_Type := (1, 2, 3, 4, 5, 6, 7, 8, 9);
A2 : Arr_Type (-2 .. 42) := (others => 0);

begin
A1 := (1, 2, 3, others => 10);

-- use a slice to assign A2 elements 11 .. 19 to 1
A2 (11 .. 19) := (others => 1);

end;

5.8 Heterogeneous Data Structures

In Ada, there's no distinction between struct and class as there is in C++. All heteroge-
neous data structures are records. Here are some simple records:
[Ada]

declare
type R is record

A, B : Integer;
C : Float;

end record;

V : R;
(continues on next page)
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(continued from previous page)
begin

V.A := 0;
end;

[C++]

struct R {
int A, B;
float C;

};

R V;
V.A = 0;

[Java]

class R {
public int A, B;
public float C;

}

R V = new R ();
V.A = 0;

Ada allows specification of default values for fields just like C++ and Java. The values spec-
ified can take the form of an ordered list of values, a named list of values, or an incomplete
list followed by others => <> to specify that fields not listed will take their default values.
For example:

type R is record
A, B : Integer := 0;
C : Float := 0.0;

end record;

V1 : R := (1, 2, 1.0);
V2 : R := (A => 1, B => 2, C => 1.0);
V3 : R := (C => 1.0, A => 1, B => 2);
V4 : R := (C => 1.0, others => <>);

5.9 Pointers

Pointers, references, and access types differ in significant ways across the languages that
we are examining. In C++, pointers are integral to a basic understanding of the language,
from array manipulation to proper declaration and use of function parameters. In Java,
direct pointer manipulation is abstracted by the Java runtime. And in Ada, direct pointer
manipulation is possible, but unlike C++, they are not required for basic usage with arrays
and parameter passing.
We'll continue this section by explaining the difference between objects allocated on the
stack and objects allocated on the heap using the following example:
[Ada]

declare
type R is record

A, B : Integer;
end record;

(continues on next page)
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V1, V2 : R;

begin
V1.A := 0;
V2 := V1;
V2.A := 1;

end;

[C++]

struct R {
int A, B;

};

R V1, V2;
V1.A = 0;
V2 = V1;
V2.A = 1;

[Java]

public class R {
public int A, B;

}

R V1, V2;
V1 = new R ();
V1.A = 0;
V2 = V1;
V2.A = 1;

There's a fundamental difference between the Ada and C++ semantics above and the se-
mantics for Java. In Ada and C++, objects are allocated on the stack and are directly
accessed. V1 and V2 are two different objects and the assignment statement copies the
value of V1 into V2. In Java, V1 and V2 are two references to objects of class R. Note that
when V1 and V2 are declared, no actual object of class R yet exists in memory: it has to
be allocated later with the new allocator operator. After the assignment V2 = V1, there's
only one R object in memory: the assignment is a reference assignment, not a value as-
signment. At the end of the Java code, V1 and V2 are two references to the same objects
and the V2.A = 1 statement changes the field of that one object, while in the Ada and the
C++ case V1 and V2 are two distinct objects.
To obtain similar behavior in Ada, you can use pointers. It can be done through Ada's access
type:
[Ada]

declare
type R is record

A, B : Integer;
end record;
type R_Access is access R;

V1 : R_Access;
V2 : R_Access;

begin
V1 := new R;
V1.A := 0;
V2 := V1;
V2.A := 1;

end;

[C++]
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struct R {
int A, B;

};

R * V1, * V2;
V1 = new R ();
V1->A = 0;
V2 = V1;
V2->A = 0;

For those coming from the Java world: there's no garbage collector in Ada, so objects allo-
cated by the new operator need to be expressly freed.
Dereferencing is performed automatically in certain situations, for instance when it is clear
that the type required is the dereferenced object rather than the pointer itself, or when ac-
cessing record members via a pointer. To explicitly dereference an access variable, append
.all. The equivalent of V1->A in C++ can be written either as V1.A or V1.all.A.
Pointers to scalar objects in Ada and C++ look like:
[Ada]

procedure Main is
type A_Int is access Integer;
Var : A_Int := new Integer;

begin
Var.all := 0;

end Main;

[C++]

int main (int argc, char *argv[]) {
int * Var = new int;
*Var = 0;

}

An initializer can be specified with the allocation by appending '(value):

Var : A_Int := new Integer'(0);

When using Ada pointers to reference objects on the stack, the referenced objects must
be declared as being aliased. This directs the compiler to implement the object using a
memory region, rather than using registers or eliminating it entirely via optimization. The
access type needs to be declared as either access all (if the referenced object needs to
be assigned to) or access constant (if the referenced object is a constant). The 'Access
attribute works like the C++ & operator to get a pointer to the object, but with a "scope
accessibility" check to prevent references to objects that have gone out of scope. For ex-
ample:
[Ada]

type A_Int is access all Integer;
Var : aliased Integer;
Ptr : A_Int := Var'Access;

[C++]

int Var;
int * Ptr = &Var;

To deallocate objects from the heap in Ada, it is necessary to use a deallocation subprogram
that accepts a specific access type. A generic procedure is provided that can be customized
to fit your needs — it's called Ada.Unchecked_Deallocation. To create your customized
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deallocator (that is, to instantiate this generic), you must provide the object type as well as
the access type as follows:
[Ada]

with Ada.Unchecked_Deallocation;
procedure Main is

type Integer_Access is access all Integer;
procedure Free is new Ada.Unchecked_Deallocation (Integer, Integer_Access);
My_Pointer : Integer_Access := new Integer;

begin
Free (My_Pointer);

end Main;

[C++]

int main (int argc, char *argv[]) {
int * my_pointer = new int;
delete my_pointer;

}
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SIX

FUNCTIONS AND PROCEDURES

6.1 General Form

Subroutines in C++ and Java are always expressed as functions (methods) which may or
may not return a value. Ada explicitly differentiates between functions and procedures.
Functions must return a value and procedures must not. Ada uses the more general term
"subprogram" to refer to both functions and procedures.
Parameters can be passed in three distinct modes: in, which is the default, is for input
parameters, whose value is provided by the caller and cannot be changed by the subpro-
gram. out is for output parameters, with no initial value, to be assigned by the subprogram
and returned to the caller. in out is a parameter with an initial value provided by the
caller, which can be modified by the subprogram and returned to the caller (more or less
the equivalent of a non-constant reference in C++). Ada also provides access parameters,
in effect an explicit pass-by-reference indicator.
In Ada the programmer specifies how the parameter will be used and in general the compiler
decides how it will be passed (i.e., by copy or by reference). (There are some exceptions
to the "in general". For example, parameters of scalar types are always passed by copy,
for all three modes.) C++ has the programmer specify how to pass the parameter, and
Java forces primitive type parameters to be passed by copy and all other parameters to be
passed by reference. For this reason, a 1:1 mapping between Ada and Java isn't obvious
but here's an attempt to show these differences:
[Ada]

procedure Proc
(Var1 : Integer;
Var2 : out Integer;
Var3 : in out Integer);

function Func (Var : Integer) return Integer;

procedure Proc
(Var1 : Integer;
Var2 : out Integer;
Var3 : in out Integer)

is
begin

Var2 := Func (Var1);
Var3 := Var3 + 1;

end Proc;

function Func (Var : Integer) return Integer
is
begin

return Var + 1;
end Func;
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[C++]

void Proc
(int Var1,
int & Var2,
int & Var3);

int Func (int Var);

void Proc
(int Var1,
int & Var2,
int & Var3) {

Var2 = Func (Var1);
Var3 = Var3 + 1;

}

int Func (int Var) {
return Var + 1;

}

[Java]

public class ProcData {
public int Var2;
public int Var3;

public void Proc (int Var1) {
Var2 = Func (Var1);
Var3 = Var3 + 1;

}

public static int Func (int Var) {
return Var + 1;

}
}

The first two declarations for Proc and Func are specifications of the subprograms which are
being provided later. Although optional here, it's still considered good practice to separately
define specifications and implementations in order to make it easier to read the program.
In Ada and C++, a function that has not yet been seen cannot be used. Here, Proc can call
Func because its specification has been declared. In Java, it's fine to have the declaration
of the subprogram later .
Parameters in Ada subprogram declarations are separated with semicolons, because com-
mas are reserved for listing multiple parameters of the same type. Parameter declaration
syntax is the same as variable declaration syntax, including default values for parame-
ters. If there are no parameters, the parentheses must be omitted entirely from both the
declaration and invocation of the subprogram.
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6.2 Overloading

Different subprograms may share the same name; this is called "overloading." As long as
the subprogram signatures (subprogram name, parameter types, and return types) are dif-
ferent, the compiler will be able to resolve the calls to the proper destinations. For example:

function Value (Str : String) return Integer;
function Value (Str : String) return Float;

V : Integer := Value ("8");

The Ada compiler knows that an assignment to V requires an Integer. So, it chooses the
Value function that returns an Integer to satisfy this requirement.
Operators in Ada can be treated as functions too. This allows you to define local operators
that override operators defined at an outer scope, and provide overloaded operators that
operate on and compare different types. To express an operator as a function, enclose it in
quotes:
[Ada]

function "=" (Left : Day; Right : Integer) return Boolean;

[C++]

bool operator = (Day Left, int Right);

6.3 Subprogram Contracts

You can express the expected inputs and outputs of subprograms by specifying subprogram
contracts. The compiler can then check for valid conditions to exist when a subprogram is
called and can check that the return value makes sense. Ada allows defining contracts in
the form of Pre and Post conditions; this facility was introduced in Ada 2012. They look
like:

function Divide (Left, Right : Float) return Float
with Pre => Right /= 0.0,

Post => Divide'Result * Right < Left + 0.0001
and then Divide'Result * Right > Left - 0.0001;

The above example adds a Pre condition, stating that Right cannot be equal to 0.0. While
the IEEE floating point standard permits divide-by-zero, you may have determined that use
of the result could still lead to issues in a particular application. Writing a contract helps
to detect this as early as possible. This declaration also provides a Post condition on the
result.
Postconditions can also be expressed relative to the value of the input:

procedure Increment (V : in out Integer)
with Pre => V < Integer'Last,

Post => V = V'Old + 1;

V'Old in the postcondition represents the value that V had before entering Increment.
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SEVEN

PACKAGES

7.1 Declaration Protection

The package is the basic modularization unit of the Ada language, as is the class for Java and
the header and implementation pair for C++. An Ada package contains three parts that, for
GNAT, are separated into two files: .ads files contain public and private Ada specifications,
and .adb files contain the implementation, or Ada bodies.
Java doesn't provide any means to cleanly separate the specification of methods from their
implementation: they all appear in the same file. You can use interfaces to emulate having
separate specifications, but this requires the use of OOP techniques which is not always
practical.
Ada and C++ do offer separation between specifications and implementations out of the
box, independent of OOP.

package Package_Name is
-- public specifications

private
-- private specifications

end Package_Name;

package body Package_Name is
-- implementation

end Package_Name;

Private types are useful for preventing the users of a package's types from depending on the
types' implementation details. The private keyword splits the package spec into "public"
and "private" parts. That is somewhat analogous to C++'s partitioning of the class construct
into different sections with different visibility properties. In Java, the encapsulation has to
be done field by field, but in Ada the entire definition of a type can be hidden. For example:

package Types is
type Type_1 is private;
type Type_2 is private;
type Type_3 is private;
procedure P (X : Type_1);
...

private
procedure Q (Y : Type_1);
type Type_1 is new Integer range 1 .. 1000;
type Type_2 is array (Integer range 1 .. 1000) of Integer;
type Type_3 is record

A, B : Integer;
end record;

end Types;
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Subprograms declared above the private separator (such as P) will be visible to the pack-
age user, and the ones below (such as Q) will not. The body of the package, the implemen-
tation, has access to both parts.

7.2 Hierarchical Packages

Ada packages can be organized into hierarchies. A child unit can be declared in the following
way:

-- root-child.ads

package Root.Child is
-- package spec goes here

end Root.Child;

-- root-child.adb

package body Root.Child is
-- package body goes here

end Root.Child;

Here, Root.Child is a child package of Root. The public part of Root.Child has access to
the public part of Root. The private part of Child has access to the private part of Root,
which is one of the main advantages of child packages. However, there is no visibility
relationship between the two bodies. One common way to use this capability is to define
subsystems around a hierarchical naming scheme.

7.3 Using Entities from Packages

Entities declared in the visible part of a package specification can be made accessible using
a with clause that references the package, which is similar to the C++ #include directive.
Visibility is implicit in Java: you can always access all classes located in your CLASSPATH.
After a with clause, entities needs to be prefixed by the name of their package, like a C++
namespace or a Java package. This prefix can be omitted if a use clause is employed,
similar to a C++ using namespace or a Java import.
[Ada]

-- pck.ads

package Pck is
My_Glob : Integer;

end Pck;

-- main.adb

with Pck;

procedure Main is
begin

Pck.My_Glob := 0;
end Main;

[C++]
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// pck.h

namespace pck {
extern int myGlob;

}

// pck.cpp

namespace pck {
int myGlob;

}

// main.cpp

#include "pck.h"

int main (int argc, char ** argv) {
pck::myGlob = 0;

}

[Java]

// Globals.java

package pck;

public class Globals {
public static int myGlob;

}

// Main.java

public class Main {
public static void main (String [] argv) {

pck.Globals.myGlob = 0;
}

}
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EIGHT

CLASSES AND OBJECT ORIENTED PROGRAMMING

8.1 Primitive Subprograms

Primitive subprograms in Ada are basically the subprograms that are eligible for inheritance
/ derivation. They are the equivalent of C++member functions and Java instance methods.
While in C++ and Java these subprograms are located within the nested scope of the type, in
Ada they are simply declared in the same scope as the type. There's no syntactic indication
that a subprogram is a primitive of a type.
The way to determine whether P is a primitive of a type T is if
1. it is declared in the same scope as T, and
2. it contains at least one parameter of type T, or returns a result of type T.

In C++ or Java, the self reference this is implicitly declared. It may need to be explicitly
stated in certain situations, but usually it's omitted. In Ada the self-reference, called the
controlling parameter, must be explicitly specified in the subprogram parameter list. While
it can be any parameter in the profile with any name, we'll focus on the typical case where
the first parameter is used as the self parameter. Having the controlling parameter listed
first also enables the use of OOP prefix notation which is convenient.
A class in C++ or Java corresponds to a tagged type in Ada. Here's an example of the
declaration of an Ada tagged type with two parameters and some dispatching and non-
dispatching primitives, with equivalent examples in C++ and Java:
[Ada]

type T is tagged record
V, W : Integer;

end record;

type T_Access is access all T;

function F (V : T) return Integer;

procedure P1 (V : access T);

procedure P2 (V : T_Access);

[C++]

class T {
public:

int V, W;

int F ();

void P1 ();
(continues on next page)
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(continued from previous page)
};

void P2 (T * v);

[Java]

public class T {
public int V, W;

public int F () {};

public void P1 () {};

public static void P2 (T v) {};
}

Note that P2 is not a primitive of T— it does not have any parameters of type T. Its param-
eter is of type T_Access, which is a different type.
Once declared, primitives can be called like any subprogram with every necessary param-
eter specified, or called using prefix notation. For example:
[Ada]

declare
V : T;

begin
V.P1;

end;

[C++]

{
T v;
v.P1 ();

}

[Java]

{
T v = new T ();
v.P1 ();

}

8.2 Derivation and Dynamic Dispatch

Despite the syntactic differences, derivation in Ada is similar to derivation (inheritance) in
C++ or Java. For example, here is a type hierarchy where a child class overrides a method
and adds a new method:
[Ada]

type Root is tagged record
F1 : Integer;

end record;

procedure Method_1 (Self : Root);

(continues on next page)
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(continued from previous page)
type Child is new Root with record

F2 : Integer;
end record;

overriding
procedure Method_1 (Self : Child);

procedure Method_2 (Self : Child);

[C++]

class Root {
public:

int f1;
virtual void method1 ();

};

class Child : public Root {
public:

int f2;
virtual void method1 ();
virtual void method2 ();

};

[Java]

public class Root {
public int f1;
public void method1 ();

}

public class Child extends Root {
public int f2;
@Override
public void method1 ();
public void method2 ();

}

Like Java, Ada primitives on tagged types are always subject to dispatching; there is no
need to mark them virtual. Also like Java, there's an optional keyword overriding to
ensure that a method is indeed overriding something from the parent type.
Unlike many other OOP languages, Ada differentiates between a reference to a specific
tagged type, and a reference to an entire tagged type hierarchy. While Root is used to
mean a specific type, Root'Class — a class-wide type — refers to either that type or any
of its descendants. A method using a parameter of such a type cannot be overridden, and
must be passed a parameter whose type is of any of Root's descendants (including Root
itself).
Next, we'll take a look at how each language finds the appropriate method to call within
an OO class hierarchy; that is, their dispatching rules. In Java, calls to non-private in-
stance methods are always dispatching. The only case where static selection of an instance
method is possible is when calling from a method to the super version.
In C++, by default, calls to virtual methods are always dispatching. One commonmistake is
to use a by-copy parameter hoping that dispatching will reach the real object. For example:

void proc (Root p) {
p.method1 ();

}

(continues on next page)
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(continued from previous page)
Root * v = new Child ();

proc (*v);

In the above code, p.method1() will not dispatch. The call to proc makes a copy of the
Root part of v, so inside proc, p.method1() refers to the method1() of the root object. The
intended behavior may be specified by using a reference instead of a copy:

void proc (Root & p) {
p.method1 ();

}

Root * v = new Child ();

proc (*v);

In Ada, tagged types are always passed by reference but dispatching only occurs on class-
wide types. The following Ada code is equivalent to the latter C++ example:

declare
procedure Proc (P : Root'Class) is
begin

P.Method_1;
end;

type Root_Access is access all Root'Class;
V : Root_Access := new Child;

begin
Proc (V.all);

end;

Dispatching from within primitives can get tricky. Let's consider a call to Method_1 in the
implementation of Method_2. The first implementation that might come to mind is:

procedure Method_2 (P : Root) is
begin

P.Method_1;
end;

However, Method_2 is called with a parameter that is of the definite type Root. More pre-
cisely, it is a definite view of a child. So, this call is not dispatching; it will always call
Method_1 of Root even if the object passed is a child of Root. To fix this, a view conversion
is necessary:

procedure Method_2 (P : Root) is
begin

Root'Class (P).Method_1;
end;

This is called "redispatching." Be careful, because this is the most common mistake made
in Ada when using OOP. In addition, it's possible to convert from a class wide view to a
definite view, and to select a given primitive, like in C++:
[Ada]

procedure Proc (P : Root'Class) is
begin

Root (P).Method_1;
end;

[C++]
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void proc (Root & p) {
p.Root::method1 ();

}

8.3 Constructors and Destructors

Ada does not have constructors and destructors in quite the same way as C++ and Java, but
there is analagous functionality in Ada in the form of default initialization and finalization.
Default initialization may be specified for a record component and will occur if a variable of
the record type is not assigned a value at initialization. For example:

type T is tagged record
F : Integer := Compute_Default_F;

end record;

function Compute_Default_F return Integer is
begin

Put_Line ("Compute");
return 0;

end Compute_Default_F;

V1 : T;
V2 : T := (F => 0);

In the declaration of V1, T.F receives a value computed by the subprogram Com-
pute_Default_F. This is part of the default initialization. V2 is initialized manually and
thus will not use the default initialization.
For additional expressive power, Ada provides a type called Ada.Finalization.
Controlled from which you can derive your own type. Then, by overriding the Initialize
procedure you can create a constructor for the type:

type T is new Ada.Finalization.Controlled with record
F : Integer;

end record;

procedure Initialize (Self : in out T) is
begin

Put_Line ("Compute");
Self.F := 0;

end Initialize;

V1 : T;
V2 : T := (F => 0);

Again, this default initialization subprogram is only called for V1; V2 is initialized manu-
ally. Furthermore, unlike a C++ or Java constructor, Initialize is a normal subprogram
and does not perform any additional initialization such as calling the parent's initialization
routines.
When deriving from Controlled, it's also possible to override the subprogram Finalize,
which is like a destructor and is called for object finalization. Like Initialize, this is a
regular subprogram. Do not expect any other finalizers to be automatically invoked for
you.
Controlled types also provide functionality that essentially allows overriding the meaning of
the assignment operation, and are useful for defining types that manage their own storage
reclamation (for example, implementing a reference count reclamation strategy).
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8.4 Encapsulation

While done at the class level for C++ and Java, Ada encapsulation occurs at the package
level and targets all entities of the language, as opposed to only methods and attributes.
For example:
[Ada]

package Pck is
type T is tagged private;
procedure Method1 (V : T);

private
type T is tagged record

F1, F2 : Integer;
end record;
procedure Method2 (V : T);

end Pck;

[C++]

class T {
public:

virtual void method1 ();
protected:

int f1, f2;
virtual void method2 ();

};

[Java]

public class T {
public void method1 ();
protected int f1, f2;
protected void method2 ();

}

The C++ and Java code's use of protected and the Ada code's use of private here demon-
strates how to map these concepts between languages. Indeed, the private part of an Ada
child package would have visibility of the private part of its parents, mimicking the notion
of protected. Only entities declared in the package body are completely isolated from
access.

8.5 Abstract Types and Interfaces

Ada, C++ and Java all offer similar functionality in terms of abstract classes, or pure virtual
classes. It is necessary in Ada and Java to explicitly specify whether a tagged type or class
is abstract, whereas in C++ the presence of a pure virtual function implicitly makes the
class an abstract base class. For example:
[Ada]

package P is

type T is abstract tagged private;

procedure Method (Self : T) is abstract;
private

type T is abstract tagged record
(continues on next page)
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(continued from previous page)
F1, F2 : Integer;

end record;

end P;

[C++]

class T {
public:

virtual void method () = 0;
protected:

int f1, f2;
};

[Java]

public abstract class T {
public abstract void method1 ();
protected int f1, f2;

};

All abstract methods must be implemented when implementing a concrete type based on
an abstract type.
Ada doesn't offer multiple inheritance the way C++ does, but it does support a Java-like
notion of interfaces. An interface is like a C++ pure virtual class with no attributes and only
abstract members. While an Ada tagged type can inherit from at most one tagged type, it
may implement multiple interfaces. For example:
[Ada]

type Root is tagged record
F1 : Integer;

end record;
procedure M1 (Self : Root);

type I1 is interface;
procedure M2 (Self : I1) is abstract;

type I2 is interface;
procedure M3 (Self : I2) is abstract;

type Child is new Root and I1 and I2 with record
F2 : Integer;

end record;

-- M1 implicitly inherited by Child
procedure M2 (Self : Child);
procedure M3 (Self : Child);

[C++]

class Root {
public:

virtual void M1();
int f1;

};

class I1 {
public:

virtual void M2 () = 0;
(continues on next page)
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};

class I2 {
public:

virtual void M3 () = 0;
};

class Child : public Root, I1, I2 {
public:

int f2;
virtual void M2 ();
virtual void M3 ();

};

[Java]

public class Root {
public void M1();
public int f1;

}

public interface I1 {
public void M2 ();

}

public interface I2 {
public void M3 ();

}

public class Child extends Root implements I1, I2 {
public int f2;
public void M2 ();
public void M3 ();

}

8.6 Invariants

Any private type in Ada may be associated with a Type_Invariant contract. An invariant
is a property of a type that must always be true after the return from of any of its primitive
subprograms. (The invariant might not be maintained during the execution of the primitive
subprograms, but will be true after the return.) Let's take the following example:

package Int_List_Pkg is

type Int_List (Max_Length : Natural) is private
with Type_Invariant => Is_Sorted (Int_List);

function Is_Sorted (List : Int_List) return Boolean;

type Int_Array is array (Positive range <>) of Integer;

function To_Int_List (Ints : Int_Array) return Int_List;

function To_Int_Array (List : Int_List) return Int_Array;

function "&" (Left, Right : Int_List) return Int_List;

... -- Other subprograms
(continues on next page)
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(continued from previous page)
private

type Int_List (Max_Length : Natural) is record
Length : Natural;
Data : Int_Array (1..Max_Length);

end record;

function Is_Sorted (List : Int_List) return Boolean is
(for all I in List.Data'First .. List.Length-1 =>

List.Data (I) <= List.Data (I+1));

end Int_List_Pkg;

package body Int_List_Pkg is

procedure Sort (Ints : in out Int_Array) is
begin

... Your favorite sorting algorithm
end Sort;

function To_Int_List (Ints : Int_Array) return Int_List is
List : Int_List :=
(Max_Length => Ints'Length,
Length => Ints'Length,
Data => Ints);

begin
Sort (List.Data);
return List;

end To_Int_List;

function To_Int_Array (List : Int_List) return Int_Array is
begin

return List.Data;
end To_Int_Array;

function "&" (Left, Right : Int_List) return Int_List is
Ints : Int_Array := Left.Data & Right.Data;

begin
Sort (Ints);
return To_Int_List (Ints);

end "&";

... -- Other subprograms
end Int_List_Pkg;

The Is_Sorted function checks that the type stays consistent. It will be called at the exit of
every primitive above. It is permissible if the conditions of the invariant aren't met during
execution of the primitive. In To_Int_List for example, if the source array is not in sorted
order, the invariant will not be satisfied at the "begin", but it will be checked at the end.
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NINE

GENERICS

Ada, C++, and Java all have support for generics or templates, but on different sets of
language entities. A C++ template can be applied to a class or a function. So can a Java
generic. An Ada generic can be either a package or a subprogram.

9.1 Generic Subprograms

In this example, we will swap two generic objects. This is possible in Ada and C++ using
a temporary variable. In Java, parameters are a copy of a reference value that is passed
into the function, so modifying those references in the function scope has no effect from
the caller's context. A generic swap method, like the below Ada or C++ examples is not
possible in Java, so we will skip the Java version of this example.
[Ada]

generic
type A_Type is private;

procedure Swap (Left, Right : in out A_Type) is
Temp : A_Type := Left;

begin
Left := Right;
Right := Temp;

end Swap;

[C++]

template <class AType>
AType swap (AType & left, AType & right) {

AType temp = left;
left = right;
right = temp;

}

And examples of using these:
[Ada]

declare
type R is record

F1, F2 : Integer;
end record;

procedure Swap_R is new Swap (R);
A, B : R;

begin
...

(continues on next page)
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Swap_R (A, B);

end;

[C++]

class R {
public:

int f1, f2;
};

R a, b;
...
swap (a, b);

The C++ template becomes usable once defined. The Ada generic needs to be explicitly
instantiated using a local name and the generic's parameters.

9.2 Generic Packages

Next, we're going to create a generic unit containing data and subprograms. In Java or
C++, this is done through a class, while in Ada, it's a generic package. The Ada and C++
model is fundamentally different from the Java model. Indeed, upon instantiation, Ada and
C++ generic data are duplicated; that is, if they contain global variables (Ada) or static
attributes (C++), each instance will have its own copy of the variable, properly typed and
independent from the others. In Java, generics are only a mechanism to have the compiler
do consistency checks, but all instances are actually sharing the same data where the
generic parameters are replaced by java.lang.Object. Let's look at the following example:
[Ada]

generic
type T is private;

package Gen is
type C is tagged record

V : T;
end record;

G : Integer;
end Gen;

[C++]

template <class T>
class C{

public:
T v;
static int G;

};

[Java]

public class C <T> {
public T v;
public static int G;

}

In all three cases, there's an instance variable (v) and a static variable (G). Let's now look
at the behavior (and syntax) of these three instantiations:
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[Ada]

declare
package I1 is new Gen (Integer);
package I2 is new Gen (Integer);
subtype Str10 is String (1..10);
package I3 is new Gen (Str10);

begin
I1.G := 0;
I2.G := 1;
I3.G := 2;

end;

[C++]

C <int>::G = 0;
C <int>::G = 1;
C <char *>::G = 2;

[Java]

C.G = 0;
C.G = 1;
C.G = 2;

In the Java case, we access the generic entity directly without using a parametric type. This
is because there's really only one instance of C, with each instance sharing the same global
variable G. In C++, the instances are implicit, so it's not possible to create two different
instances with the same parameters. The first two assignments are manipulating the same
global while the third one is manipulating a different instance. In the Ada case, the three
instances are explicitly created, named, and referenced individually.

9.3 Generic Parameters

Ada offers a wide variety of generic parameters which is difficult to translate into other
languages. The parameters used during instantiation — and as a consequence those on
which the generic unit may rely on — may be variables, types, or subprograms with certain
properties. For example, the following provides a sort algorithm for any kind of array:

generic
type Component is private;
type Index is (<>);
with function "<" (Left, Right : Component) return Boolean;
type Array_Type is array (Index range <>) of Component;

procedure Sort (A : in out Array_Type);

The above declaration states that we need a type (Component), a discrete type (Index),
a comparison subprogram ("<"), and an array definition (Array_Type). Given these, it's
possible to write an algorithm that can sort any Array_Type. Note the usage of the with
reserved word in front of the function name, to differentiate between the generic parameter
and the beginning of the generic subprogram.
Here is a non-exhaustive overview of the kind of constraints that can be put on types:

type T is private; -- T is a constrained type, such as Integer
type T (<>) is private; -- T can be an unconstrained type, such as String
type T is tagged private; -- T is a tagged type
type T is new T2 with private; -- T is an extension of T2
type T is (<>); -- T is a discrete type

(continues on next page)
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type T is range <>; -- T is an integer type
type T is digits <>; -- T is a floating point type
type T is access T2; -- T is an access type, T2 is its designated type
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TEN

EXCEPTIONS

Exceptions are a mechanism for dealing with run-time occurrences that are rare, that usu-
ally correspond to errors (such as improperly formed input data), and whose occurrence
causes an unconditional transfer of control.

10.1 Standard Exceptions

Compared with Java and C++, the notion of an Ada exception is very simple. An exception
in Ada is an object whose "type" is exception, as opposed to classes in Java or any type in
C++. The only piece of user data that can be associated with an Ada exception is a String.
Basically, an exception in Ada can be raised, and it can be handled; information associated
with an occurrence of an exception can be interrogated by a handler.
Ada makes heavy use of exceptions especially for data consistency check failures at run
time. These include, but are not limited to, checking against type ranges and array bound-
aries, null pointers, various kind of concurrency properties, and functions not returning a
value. For example, the following piece of code will raise the exception Constraint_Error:

procedure P is
V : Positive;

begin
V := -1;

end P;

In the above code, we're trying to assign a negative value to a variable that's declared to
be positive. The range check takes place during the assignment operation, and the failure
raises the Constraint_Error exception at that point. (Note that the compiler may give a
warning that the value is out of range, but the error is manifest as a run-time exception.)
Since there is no local handler, the exception is propagated to the caller; if P is the main
procedure, then the program will be terminated.
Java and C++ can throw and catch exceptions when trying code. All Ada code is already
implicitly within try blocks, and exceptions are raised and handled.
[Ada]

begin
Some_Call;

exception
when Exception_1 =>

Put_Line ("Error 1");
when Exception_2 =>

Put_Line ("Error 2");
when others =>

Put_Line ("Unknown error");
end;
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[C++]

try {
someCall ();

} catch (Exception1) {
cout << "Error 1" << endl;

} catch (Exception2) {
cout << "Error 2" << endl;

} catch (...) {
cout << "Unknown error" << endl;

}

[Java]

try {
someCall ();

} catch (Exception1 e1) {
System.out.println ("Error 1");

} catch (Exception2 e2) {
System.out.println ("Error 2");

} catch (Throwable e3) {
System.out.println ("Unknown error");

}

Raising and throwing exceptions is permissible in all three languages.

10.2 Custom Exceptions

Custom exception declarations resemble object declarations, and they can be created in
Ada using the exception keyword:

My_Exception : exception;

Your exceptions can then be raised using a raise statement, optionally accompanied by a
message following the with reserved word:
[Ada]

raise My_Exception with "Some message";

[C++]

throw My_Exception ("Some message");

[Java]

throw new My_Exception ("Some message");

Language defined exceptions can also be raised in the same manner:

raise Constraint_Error;
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CONCURRENCY

11.1 Tasks

Java and Ada both provide support for concurrency in the language. The C++ language has
added a concurrency facility in its most recent revision, C++11, but we are assuming that
most C++ programmers are not (yet) familiar with these new features. We thus provide
the following mock API for C++ which is similar to the Java Thread class:

class Thread {
public:

virtual void run (); // code to execute
void start (); // starts a thread and then call run ()
void join (); // waits until the thread is finished

};

Each of the following examples will display the 26 letters of the alphabet twice, using two
concurrent threads/tasks. Since there is no synchronization between the two threads of
control in any of the examples, the output may be interspersed.
[Ada]

procedure Main is -- implicitly called by the environment task
task My_Task;

task body My_Task is
begin

for I in 'A' .. 'Z' loop
Put_Line (I);

end loop;
end My_Task;

begin
for I in 'A' .. 'Z' loop

Put_Line (I);
end loop;

end Main;

[C++]

class MyThread : public Thread {
public:

void run () {
for (char i = 'A'; i <= 'Z'; ++i) {

cout << i << endl;
}

}
};

(continues on next page)
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int main (int argc, char ** argv) {

MyThread myTask;
myTask.start ();

for (char i = 'A'; i <= 'Z'; ++i) {
cout << i << endl;

}

myTask.join ();

return 0;
}

[Java]

public class Main {
static class MyThread extends Thread {

public void run () {
for (char i = 'A'; i <= 'Z'; ++i) {

System.out.println (i);
}

}
}

public static void main (String args) {
MyThread myTask = new MyThread ();
myTask.start ();

for (char i = 'A'; i <= 'Z'; ++i) {
System.out.println (i);

}
myTask.join ();

}
}

Any number of Ada tasks may be declared in any declarative region. A task declaration
is very similar to a procedure or package declaration. They all start automatically when
control reaches the begin. A block will not exit until all sequences of statements defined
within that scope, including those in tasks, have been completed.
A task type is a generalization of a task object; each object of a task type has the same
behavior. A declared object of a task type is started within the scope where it is declared,
and control does not leave that scope until the task has terminated.
An Ada task type is somewhat analogous to a Java Thread subclass, but in Java the instances
of such a subclass are always dynamically allocated. In Ada an instance of a task type may
either be declared or dynamically allocated.
Task types can be parametrized; the parameter serves the same purpose as an argument
to a constructor in Java. The following example creates 10 tasks, each of which displays a
subset of the alphabet contained between the parameter and the 'Z' Character. As with
the earlier example, since there is no synchronization among the tasks, the output may be
interspersed depending on the implementation's task scheduling algorithm.
[Ada]

task type My_Task (First : Character);

task body My_Task is
begin

for I in First .. 'Z' loop
(continues on next page)
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(continued from previous page)
Put_Line (I);

end loop;
end My_Task;

procedure Main is
Tab : array (0 .. 9) of My_Task ('G');

begin
null;

end Main;

[C++]

class MyThread : public Thread {
public:

char first;

void run () {
for (char i = first; i <= 'Z'; ++i) {

cout << i << endl;
}

}
};

int main (int argc, char ** argv) {
MyThread tab [10];

for (int i = 0; i < 9; ++i) {
tab [i].first = 'G';
tab [i].start ();

}

for (int i = 0; i < 9; ++i) {
tab [i].join ();

}

return 0;
}

[Java]

public class MyThread extends Thread {
public char first;

public MyThread (char first){
this.first = first;

}

public void run () {
for (char i = first; i <= 'Z'; ++i) {

cout << i << endl;
}

}
}

public class Main {
public static void main (String args) {

MyThread [] tab = new MyThread [10];

for (int i = 0; i < 9; ++i) {
tab [i] = new MyThread ('G');

(continues on next page)
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tab [i].start ();

}

for (int i = 0; i < 9; ++i) {
tab [i].join ();

}
}

}

In Ada a task may be allocated on the heap as opposed to the stack. The task will then start
as soon as it has been allocated, and terminates when its work is completed. This model is
probably the one that's the most similar to Java:
[Ada]

type Ptr_Task is access My_Task;

procedure Main is
T : Ptr_Task;

begin
T := new My_Task ('G');

end Main;

[C++]

int main (int argc, char ** argv) {
MyThread * t = new MyThread ();
t->first = 'G';
t->start ();
return 0;

}

[Java]

public class Main {
public static void main (String args) {

MyThread t = new MyThread ('G');

t.start ();
}

}

11.2 Rendezvous

A rendezvous is a synchronization between two tasks, allowing them to exchange data
and coordinate execution. Ada's rendezvous facility cannot be modeled with C++ or Java
without complex machinery. Therefore, this section will just show examples written in Ada.
Let's consider the following example:

with Ada.Text_IO; use Ada.Text_IO;

procedure Main is

task After is
entry Go;

end After ;

(continues on next page)
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task body After is
begin

accept Go;
Put_Line ("After");

end After;

begin
Put_Line ("Before");
After.Go;

end;

The Go entry declared in After is the external interface to the task. In the task body, the
accept statement causes the task to wait for a call on the entry. This particular entry and
accept pair doesn't do much more than cause the task to wait until Main calls After.Go.
So, even though the two tasks start simultaneously and execute independently, they can
coordinate via Go. Then, they both continue execution independently after the rendezvous.
The entry/accept pair can take/pass parameters, and the accept statement can contain a
sequence of statements; while these statements are executed, the caller is blocked.
Let's look at a more ambitious example. The rendezvous below accepts parameters and
executes some code:

with Ada.Text_IO; use Ada.Text_IO;

procedure Main is

task After is
entry Go (Text : String);

end After ;

task body After is
begin

accept Go (Text : String) do
Put_Line ("After: " & Text);

end Go;
end After;

begin
Put_Line ("Before");
After.Go ("Main");

end;

In the above example, the Put_Line is placed in the accept statement. Here's a possible
execution trace, assuming a uniprocessor:
1. At the begin of Main, task After is started and the main procedure is suspended.
2. After reaches the accept statement and is suspended, since there is no pending call

on the Go entry.
3. The main procedure is awakened and executes the Put_Line invocation, displaying

the string "Before".
4. The main procedure calls the Go entry. Since After is suspended on its accept state-

ment for this entry, the call succeeds.
5. The main procedure is suspended, and the task After is awakened to execute the

body of the accept statement. The actual parameter "Main" is passed to the accept
statement, and the Put_Line invocation is executed. As a result, the string "After:
Main" is displayed.

6. When the accept statement is completed, both the After task and the main proce-
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dure are ready to run. Suppose that the Main procedure is given the processor. It
reaches its end, but the local task After has not yet terminated. The main procedure
is suspended.

7. The After task continues, and terminates since it is at its end. The main procedure is
resumed, and it too can terminate since its dependent task has terminated.

The above description is a conceptual model; in practice the implementation can perform
various optimizations to avoid unnecessary context switches.

11.3 Selective Rendezvous

The accept statement by itself can only wait for a single event (call) at a time. The select
statement allows a task to listen for multiple events simultaneously, and then to deal with
the first event to occur. This feature is illustrated by the task below, which maintains an
integer value that is modified by other tasks that call Increment, Decrement, and Get:

task Counter is
entry Get (Result : out Integer);
entry Increment;
entry Decrement;

end Counter;

task body Counter is
Value : Integer := 0;

begin
loop

select
accept Increment do

Value := Value + 1;
end Increment;

or
accept Decrement do

Value := Value - 1;
end Decrement;

or
accept Get (Result : out Integer) do

Result := Value;
end Get;

or
delay 60.0; -- delay 1 minute
exit;

end select;
end loop;

end Counter;

When the task's statement flow reaches the select, it will wait for all four events — three
entries and a delay — in parallel. If the delay of one minute is exceeded, the task will
execute the statements following the delay statement (and in this case will exit the loop,
in effect terminating the task). The accept bodies for the Increment, Decrement, or Get
entries will be otherwise executed as they're called. These four sections of the select
statement are mutually exclusive: at each iteration of the loop, only one will be invoked.
This is a critical point; if the task had been written as a package, with procedures for the
various operations, then a "race condition" could occur wheremultiple tasks simultaneously
calling, say, Increment, cause the value to only get incremented once. In the tasking
version, if multiple tasks simultaneously call Increment then only one at a time will be
accepted, and the value will be incremented by each of the tasks when it is accepted.
More specifically, each entry has an associated queue of pending callers. If a task calls one
of the entries and Counter is not ready to accept the call (i.e., if Counter is not suspended
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at the select statement) then the calling task is suspended, and placed in the queue of
the entry that it is calling. From the perspective of the Counter task, at any iteration of the
loop there are several possibilities:

• There is no call pending on any of the entries. In this case Counter is suspended. It
will be awakened by the first of two events: a call on one of its entries (which will then
be immediately accepted), or the expiration of the one minute delay (whose effect
was noted above).

• There is a call pending on exactly one of the entries. In this case control passes to the
select branch with an accept statement for that entry. The choice of which caller to
accept, if more than one, depends on the queuing policy, which can be specified via
a pragma defined in the Real-Time Systems Annex of the Ada standard; the default is
First-In First-Out.

• There are calls pending on more than one entry. In this case one of the entries with
pending callers is chosen, and then one of the callers is chosen to be de-queued (the
choices depend on the queueing policy).

11.4 Protected Objects

Although the rendezvous may be used to implement mutually exclusive access to a shared
data object, an alternative (and generally preferable) style is through a protected object,
an efficiently implementable mechanism that makes the effect more explicit. A protected
object has a public interface (its protected operations) for accessing and manipulating the
object's components (its private part). Mutual exclusion is enforced through a conceptual
lock on the object, and encapsulation ensures that the only external access to the compo-
nents are through the protected operations.
Two kinds of operations can be performed on such objects: read-write operations by pro-
cedures or entries, and read-only operations by functions. The lock mechanism is imple-
mented so that it's possible to perform concurrent read operations but not concurrent write
or read/write operations.
Let's reimplement our earlier tasking example with a protected object called Counter:

protected Counter is
function Get return Integer;
procedure Increment;
procedure Decrement;

private
Value : Integer := 0;

end Counter;

protected body Counter is
function Get return Integer is
begin

return Value;
end Get;

procedure Increment is
begin
Value := Value + 1;

end Increment;

procedure Decrement is
begin

Value := Value - 1;
end Decrement;

end Counter;
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Having two completely different ways to implement the same paradigmmight seem compli-
cated. However, in practice the actual problem to solve usually drives the choice between
an active structure (a task) or a passive structure (a protected object).
A protected object can be accessed through prefix notation:

Counter.Increment;
Counter.Decrement;
Put_Line (Integer'Image (Counter.Get));

A protected object may look like a package syntactically, since it contains declarations that
can be accessed externally using prefix notation. However, the declaration of a protected
object is extremely restricted; for example, no public data is allowed, no types can be
declared inside, etc. And besides the syntactic differences, there is a critical semantic
distinction: a protected object has a conceptual lock that guarantees mutual exclusion;
there is no such lock for a package.
Like tasks, it's possible to declare protected types that can be instantiated several times:

declare
protected type Counter is

-- as above
end Counter;

protected body Counter is
-- as above

end Counter;

C1 : Counter;
C2 : Counter;

begin
C1.Increment;
C2.Decrement;
...

end;

Protected objects and types can declare a procedure-like operation known as an "entry".
An entry is somewhat similar to a procedure but includes a so-called barrier condition that
must be true in order for the entry invocation to succeed. Calling a protected entry is
thus a two step process: first, acquire the lock on the object, and then evaluate the barrier
condition. If the condition is true then the caller will execute the entry body. If the condition
is false, then the caller is placed in the queue for the entry, and relinquishes the lock.
Barrier conditions (for entries with non-empty queues) are reevaluated upon completion of
protected procedures and protected entries.
Here's an example illustrating protected entries: a protected type that models a binary
semaphore / persistent signal.

protected type Binary_Semaphore is
entry Wait;
procedure Signal;

private
Signaled : Boolean := False;

end Binary_Semaphore;

protected body Binary_Semaphore is
entry Wait when Signaled is
begin

Signaled := False;
end Wait;

procedure Signal is
(continues on next page)
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(continued from previous page)
begin

Signaled := True;
end Signal;

end Binary_Semaphore;

Ada concurrency features providemuch further generality than what's been presented here.
For additional information please consult one of the works cited in the References section.
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TWELVE

LOW LEVEL PROGRAMMING

12.1 Representation Clauses

We've seen in the previous chapters how Ada can be used to describe high level semantics
and architecture. The beauty of the language, however, is that it can be used all the way
down to the lowest levels of the development, including embedded assembly code or bit-
level data management.
One very interesting feature of the language is that, unlike C, for example, there are no data
representation constraints unless specified by the developer. This means that the compiler
is free to choose the best trade-off in terms of representation vs. performance. Let's start
with the following example:
[Ada]

type R is record
V : Integer range 0 .. 255;
B1 : Boolean;
B2 : Boolean;

end record
with Pack;

[C++]

struct R {
unsigned int v:8;
bool b1;
bool b2;

};

[Java]

public class R {
public byte v;
public boolean b1;
public boolean b2;

}

The Ada and the C++ code above both represent efforts to create an object that's as small
as possible. Controlling data size is not possible in Java, but the language does specify the
size of values for the primitive types.
Although the C++ and Ada code are equivalent in this particular example, there's an inter-
esting semantic difference. In C++, the number of bits required by each field needs to be
specified. Here, we're stating that v is only 8 bits, effectively representing values from 0 to
255. In Ada, it's the other way around: the developer specifies the range of values required
and the compiler decides how to represent things, optimizing for speed or size. The Pack
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aspect declared at the end of the record specifies that the compiler should optimize for size
even at the expense of decreased speed in accessing record components.
Other representation clauses can be specified as well, along with compile-time consistency
checks between requirements in terms of available values and specified sizes. This is par-
ticularly useful when a specific layout is necessary; for example when interfacing with hard-
ware, a driver, or a communication protocol. Here's how to specify a specific data layout
based on the previous example:

type R is record
V : Integer range 0 .. 255;
B1 : Boolean;
B2 : Boolean;

end record;

for R use record
-- Occupy the first bit of the first byte.
B1 at 0 range 0 .. 0;

-- Occupy the last 7 bits of the first byte,
-- as well as the first bit of the second byte.
V at 0 range 1 .. 8;

-- Occupy the second bit of the second byte.
B2 at 1 range 1 .. 1;

end record;

We omit the with Pack directive and instead use a record representation clause following
the record declaration. The compiler is directed to spread objects of type R across two
bytes. The layout we're specifying here is fairly inefficient to work with on any machine,
but you can have the compiler construct the most efficient methods for access, rather than
coding your own machine-dependent bit-level methods manually.

12.2 Embedded Assembly Code

When performing low-level development, such as at the kernel or hardware driver level,
there can be times when it is necessary to implement functionality with assembly code.
Every Ada compiler has its own conventions for embedding assembly code, based on the
hardware platform and the supported assembler(s). Our examples here will work with GNAT
and GCC on the x86 architecture.
All x86 processors since the Intel Pentium offer the rdtsc instruction, which tells us the
number of cycles since the last processor reset. It takes no inputs and places an unsigned
64 bit value split between the edx and eax registers.
GNAT provides a subprogram called System.Machine_Code.Asm that can be used for assem-
bly code insertion. You can specify a string to pass to the assembler as well as source-level
variables to be used for input and output:

with System.Machine_Code; use System.Machine_Code;
with Interfaces; use Interfaces;

function Get_Processor_Cycles return Unsigned_64 is
Low, High : Unsigned_32;
Counter : Unsigned_64;

begin
Asm ("rdtsc",

Outputs =>
(Unsigned_32'Asm_Output ("=a", Low),

(continues on next page)
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Unsigned_32'Asm_Output ("=d", High)),

Volatile => True);

Counter :=
Unsigned_64 (High) * 2 ** 32 +
Unsigned_64 (Low);

return Counter;
end Get_Processor_Cycles;

The Unsigned_32'Asm_Output clauses above provide associations between machine reg-
isters and source-level variables to be updated. "=a" and "=d" refer to the eax and edx
machine registers, respectively. The use of the Unsigned_32 and Unsigned_64 types from
package Interfaces ensures correct representation of the data. We assemble the two
32-bit values to form a single 64 bit value.
We set the Volatile parameter to True to tell the compiler that invoking this instruction
multiple times with the same inputs can result in different outputs. This eliminates the
possibility that the compiler will optimize multiple invocations into a single call.
With optimization turned on, the GNAT compiler is smart enough to use the eax and edx reg-
isters to implement the High and Low variables, resulting in zero overhead for the assembly
interface.
Themachine code insertion interface providesmany features beyond what was shown here.
More information can be found in the GNAT User's Guide, and the GNAT Reference manual.

12.3 Interfacing with C

Much effort was spent making Ada easy to interface with other languages. The Interfaces
package hierarchy and the pragmas Convention, Import, and Export allow you to make
inter-language calls while observing proper data representation for each language.
Let's start with the following C code:

struct my_struct {
int A, B;

};

void call (my_struct * p) {
printf ("%d", p->A);

}

To call that function from Ada, the Ada compiler requires a description of the data struc-
ture to pass as well as a description of the function itself. To capture how the C struct
my_struct is represented, we can use the following record along with a pragma Conven-
tion. The pragma directs the compiler to lay out the data in memory the way a C compiler
would.

type my_struct is record
A : Interfaces.C.int;
B : Interfaces.C.int;

end record;
pragma Convention (C, my_struct);

Describing a foreign subprogram call to Ada code is called "binding" and it is performed in
two stages. First, an Ada subprogram specification equivalent to the C function is coded.
A C function returning a value maps to an Ada function, and a void function maps to an
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Ada procedure. Then, rather than implementing the subprogram using Ada code, we use a
pragma Import:

procedure Call (V : my_struct);
pragma Import (C, Call, "call"); -- Third argument optional

The Import pragma specifies that whenever Call is invoked by Ada code, it should invoke
the call function with the C calling convention.
And that's all that's necessary. Here's an example of a call to Call:

declare
V : my_struct := (A => 1, B => 2);

begin
Call (V);

end;

You can also make Ada subprograms available to C code, and examples of this can be found
in the GNAT User's Guide. Interfacing with C++ and Java use implementation-dependent
features that are also available with GNAT.

66 Chapter 12. Low Level Programming



CHAPTER

THIRTEEN

CONCLUSION

All the usual paradigms of imperative programming can be found in all three languages
that we surveyed in this document. However, Ada is different from the rest in that it's
more explicit when expressing properties and expectations. This is a good thing: being
more formal affords better communication among programmers on a team and between
programmers and machines. You also get more assurance of the coherence of a program
at many levels. Ada can help reduce the cost of software maintenance by shifting the effort
to creating a sound system the first time, rather than working harder, more often, and at
greater expense, to fix bugs found later in systems already in production. Applications that
have reliability needs, long term maintenance requirements, or safety/security concerns
are those for which Ada has a proven track record.
It's becoming increasingly common to find systems implemented in multiple languages,
and Ada has standard interfacing facilities to allow Ada code to invoke subprograms and/or
reference data structures from other language environments, or vice versa. Use of Ada
thus allows easy interfacing between different technologies, using each for what it's best
at.
We hope this guide has provided some insight into the Ada software engineer's world and
has made Ada more accessible to programmers already familiar with programming in other
languages.
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