
Patrick Rogers
and Michael Frank

Guidelines for Safe and Secure

Ada/SPARK

Guidelines for Safe and Secure
Ada / SPARK
Release 2024-09

Patrick Rogers
and Michael Frank

Sep 08, 2024

CONTENTS

1 Introduction 3
1.1 Scope . 3
1.2 Structure . 3
1.3 Enforcement . 4
1.4 About the Rules . 4

1.4.1 Mapping to Other Standards . 4

2 Definitions 5
2.1 Level . 5
2.2 Remediation . 5

3 Dynamic Storage Management (DYN) 7
3.1 Common High Integrity Restrictions (DYN01) . 8

3.1.1 Reference . 8
3.1.2 Description . 8
3.1.3 Applicable Vulnerability within ISO TR 24772-2 9
3.1.4 Applicable Common Weakness Enumeration 9
3.1.5 Noncompliant Code Example . 9
3.1.6 Compliant Code Example . 9
3.1.7 Notes . 10

3.2 Traditional Static Allocation Policy (DYN02) . 10
3.2.1 Reference . 10
3.2.2 Description . 11
3.2.3 Applicable Vulnerability within ISO TR 24772-2 11
3.2.4 Applicable Common Weakness Enumeration 11
3.2.5 Noncompliant Code Example . 11
3.2.6 Compliant Code Example . 12
3.2.7 Notes . 12

3.3 Access Types Without Allocators Policy (DYN03) 12
3.3.1 Reference . 12
3.3.2 Description . 12
3.3.3 Applicable Vulnerability within ISO TR 24772-2 13
3.3.4 Applicable Common Weakness Enumeration 13
3.3.5 Noncompliant Code Example . 13
3.3.6 Compliant Code Example . 13
3.3.7 Notes . 14

3.4 Minimal Dynamic Allocation Policy (DYN04) . 14
3.4.1 Reference . 14
3.4.2 Description . 14
3.4.3 Applicable Vulnerability within ISO TR 24772-2 15
3.4.4 Applicable Common Weakness Enumeration 15
3.4.5 Noncompliant Code Example . 15
3.4.6 Compliant Code Example . 15
3.4.7 Notes . 15

i

3.5 User-Defined Storage Pools Policy (DYN05) . 15
3.5.1 Reference . 16
3.5.2 Description . 16
3.5.3 Applicable Vulnerability within ISO TR 24772-2 16
3.5.4 Applicable Common Weakness Enumeration 17
3.5.5 Noncompliant Code Example . 17
3.5.6 Compliant Code Example . 17
3.5.7 Notes . 17

3.6 Statically Determine Maximum Stack Requirements (DYN06) 17
3.6.1 Reference . 18
3.6.2 Description . 18
3.6.3 Applicable Vulnerability within ISO TR 24772-2 18
3.6.4 Applicable Common Weakness Enumeration 18
3.6.5 Noncompliant Code Example . 18
3.6.6 Compliant Code Example . 19
3.6.7 Notes . 19

4 Safe Reclamation (RCL) 21
4.1 No Multiple Reclamations (RCL01) . 21

4.1.1 Reference . 22
4.1.2 Description . 22
4.1.3 Applicable Vulnerability within ISO TR 24772-2 22
4.1.4 Applicable Common Weakness Enumeration 22
4.1.5 Noncompliant Code Example . 22
4.1.6 Compliant Code Example . 22
4.1.7 Notes . 23

4.2 Only Reclaim Allocated Storage (RCL02) . 23
4.2.1 Reference . 23
4.2.2 Description . 23
4.2.3 Applicable Vulnerability within ISO TR 24772-2 24
4.2.4 Applicable Common Weakness Enumeration 24
4.2.5 Noncompliant Code Example . 24
4.2.6 Compliant Code Example . 24
4.2.7 Notes . 24

4.3 Only Reclaim to the Same Pool (RCL03) . 24
4.3.1 Reference . 25
4.3.2 Description . 25
4.3.3 Applicable Vulnerability within ISO TR 24772-2 25
4.3.4 Applicable Common Weakness Enumeration 25
4.3.5 Noncompliant Code Example . 25
4.3.6 Compliant Code Example . 26
4.3.7 Notes . 26

5 Concurrency (CON) 27
5.1 Use the Ravenscar Profile (CON01) . 28

5.1.1 Reference . 29
5.1.2 Description . 29
5.1.3 Applicable Vulnerability within ISO TR 24772-2 29
5.1.4 Applicable Common Weakness Enumeration 30
5.1.5 Noncompliant Code Example . 30
5.1.6 Compliant Code Example . 30
5.1.7 Notes . 30

5.2 Use the Jorvik Profile (CON02) . 31
5.2.1 Reference . 31
5.2.2 Description . 31
5.2.3 Applicable Vulnerability within ISO TR 24772-2 32
5.2.4 Applicable Common Weakness Enumeration 32
5.2.5 Noncompliant Code Example . 32

ii

5.2.6 Compliant Code Example . 33
5.2.7 Notes . 33

5.3 Avoid Shared Variables for Inter-task Communication (CON03) 33
5.3.1 Reference . 34
5.3.2 Description . 34
5.3.3 Applicable Vulnerability within ISO TR 24772-2 34
5.3.4 Applicable Common Weakness Enumeration 34
5.3.5 Noncompliant Code Example . 34
5.3.6 Compliant Code Example . 34
5.3.7 Notes . 35

6 Robust Programming Practice (RPP) 37
6.1 No Use of "others" in Case Constructs (RPP01) 37

6.1.1 Reference . 38
6.1.2 Description . 38
6.1.3 Applicable Vulnerability within ISO TR 24772-2 38
6.1.4 Applicable Common Weakness Enumeration 38
6.1.5 Noncompliant Code Example . 38
6.1.6 Compliant Code Example . 38
6.1.7 Notes . 39

6.2 No Enumeration Ranges in Case Constructs (RPP02) 39
6.2.1 Reference . 39
6.2.2 Description . 39
6.2.3 Applicable Vulnerability within ISO TR 24772-2 39
6.2.4 Applicable Common Weakness Enumeration 40
6.2.5 Noncompliant Code Example . 40
6.2.6 Compliant Code Example . 40
6.2.7 Notes . 40

6.3 Limited Use of "others" in Aggregates (RPP03) 40
6.3.1 Reference . 41
6.3.2 Description . 41
6.3.3 Applicable Vulnerability within ISO TR 24772-2 41
6.3.4 Applicable Common Weakness Enumeration 41
6.3.5 Noncompliant Code Example . 41
6.3.6 Compliant Code Example . 41
6.3.7 Notes . 42

6.4 No Unassigned Mode-Out Procedure Parameters (RPP04) 42
6.4.1 Reference . 42
6.4.2 Description . 42
6.4.3 Applicable Vulnerability within ISO TR 24772-2 43
6.4.4 Applicable Common Weakness Enumeration 43
6.4.5 Noncompliant Code Example . 43
6.4.6 Compliant Code Example . 43
6.4.7 Notes . 44

6.5 No Use of "others" in Exception Handlers (RPP05) 44
6.5.1 Reference . 44
6.5.2 Description . 44
6.5.3 Applicable Vulnerability within ISO TR 24772-2 45
6.5.4 Applicable Common Weakness Enumeration 45
6.5.5 Noncompliant Code Example . 45
6.5.6 Compliant Code Example . 45
6.5.7 Notes . 45

6.6 Avoid Function Side-Effects (RPP06) . 46
6.6.1 Reference . 46
6.6.2 Description . 46
6.6.3 Applicable Vulnerability within ISO TR 24772-2 47
6.6.4 Applicable Common Weakness Enumeration 47
6.6.5 Noncompliant Code Example . 47

iii

6.6.6 Compliant Code Example . 47
6.6.7 Notes . 47

6.7 Functions Only Have Mode "in" (RPP07) . 47
6.7.1 Reference . 48
6.7.2 Description . 48
6.7.3 Applicable Vulnerability within ISO TR 24772-2 48
6.7.4 Applicable Common Weakness Enumeration 48
6.7.5 Noncompliant Code Example . 48
6.7.6 Compliant Code Example . 48
6.7.7 Notes . 49

6.8 Limit Parameter Aliasing (RPP08) . 49
6.8.1 Reference . 49
6.8.2 Description . 49
6.8.3 Applicable Vulnerability within ISO TR 24772-2 50
6.8.4 Applicable Common Weakness Enumeration 50
6.8.5 Noncompliant Code Example . 50
6.8.6 Compliant Code Example . 51
6.8.7 Notes . 51

6.9 Use Precondition and Postcondition Contracts (RPP09) 51
6.9.1 Reference . 51
6.9.2 Description . 52
6.9.3 Applicable Vulnerability within ISO TR 24772-2 52
6.9.4 Applicable Common Weakness Enumeration 52
6.9.5 Noncompliant Code Example . 52
6.9.6 Compliant Code Example . 52
6.9.7 Notes . 53

6.10 Do Not Re-Verify Preconditions in Subprogram Bodies (RPP10) 53
6.10.1 Reference . 53
6.10.2 Description . 53
6.10.3 Applicable Vulnerability within ISO TR 24772-2 54
6.10.4 Applicable Common Weakness Enumeration 54
6.10.5 Noncompliant Code Example . 54
6.10.6 Compliant Code Example . 54
6.10.7 Notes . 54

6.11 Always Use the Result of Function Calls (RPP11) 54
6.11.1 Reference . 55
6.11.2 Description . 55
6.11.3 Applicable Vulnerability within ISO TR 24772-2 55
6.11.4 Applicable Common Weakness Enumeration 55
6.11.5 Noncompliant Code Example . 56
6.11.6 Compliant Code Example . 56
6.11.7 Notes . 56

6.12 No Recursion (RPP12) . 56
6.12.1 Reference . 56
6.12.2 Description . 57
6.12.3 Applicable Vulnerability within ISO TR 24772-2 57
6.12.4 Applicable Common Weakness Enumeration 57
6.12.5 Noncompliant Code Example . 57
6.12.6 Compliant Code Example . 57
6.12.7 Notes . 57

6.13 No Reuse of Standard Typemarks (RPP13) . 58
6.13.1 Reference . 58
6.13.2 Description . 58
6.13.3 Applicable Vulnerability within ISO TR 24772-2 58
6.13.4 Applicable Common Weakness Enumeration 59
6.13.5 Noncompliant Code Example . 59
6.13.6 Compliant Code Example . 59
6.13.7 Notes . 59

iv

6.14 Use Symbolic Constants for Literal Values (RPP14) 59
6.14.1 Reference . 60
6.14.2 Description . 60
6.14.3 Applicable Vulnerability within ISO TR 24772-2 60
6.14.4 Applicable Common Weakness Enumeration 60
6.14.5 Noncompliant Code Example . 60
6.14.6 Compliant Code Example . 60
6.14.7 Notes . 61

7 Exception Usage (EXU) 63
7.1 Do Not Raise Language-Defined Exceptions (EXU01) 64

7.1.1 Reference . 64
7.1.2 Description . 64
7.1.3 Applicable Vulnerability within ISO TR 24772-2 64
7.1.4 Applicable Common Weakness Enumeration 65
7.1.5 Noncompliant Code Example . 65
7.1.6 Compliant Code Example . 65
7.1.7 Notes . 65

7.2 No Unhandled Application-Defined Exceptions (EXU02) 65
7.2.1 Reference . 66
7.2.2 Description . 66
7.2.3 Applicable Vulnerability within ISO TR 24772-2 67
7.2.4 Applicable Common Weakness Enumeration 67
7.2.5 Noncompliant Code Example . 67
7.2.6 Compliant Code Example . 67
7.2.7 Notes . 68

7.3 No Exception Propagation Beyond Name Visibility (EXU03) 68
7.3.1 Reference . 68
7.3.2 Description . 68
7.3.3 Applicable Vulnerability within ISO TR 24772-2 68
7.3.4 Applicable Common Weakness Enumeration 69
7.3.5 Noncompliant Code Example . 69
7.3.6 Compliant Code Example . 69
7.3.7 Notes . 70

7.4 Prove Absence of Run-time Exceptions (EXU04) 70
7.4.1 Reference . 70
7.4.2 Description . 70
7.4.3 Applicable Vulnerability within ISO TR 24772-2 71
7.4.4 Applicable Common Weakness Enumeration 71
7.4.5 Noncompliant Code Example . 71
7.4.6 Compliant Code Example . 71
7.4.7 Notes . 71

8 Object-Oriented Programming (OOP) 73
8.1 No Class-wide Constructs Policy (OOP01) . 74

8.1.1 Reference . 74
8.1.2 Description . 74
8.1.3 Applicable Vulnerability within ISO TR 24772-2 74
8.1.4 Applicable Common Weakness Enumeration 75
8.1.5 Noncompliant Code Example . 75
8.1.6 Compliant Code Example . 75
8.1.7 Notes . 75

8.2 Static Dispatching Only Policy (OOP02) . 75
8.2.1 Reference . 76
8.2.2 Description . 76
8.2.3 Applicable Vulnerability within ISO TR 24772-2 76
8.2.4 Applicable Common Weakness Enumeration 76
8.2.5 Noncompliant Code Example . 76

v

8.2.6 Compliant Code Example . 76
8.2.7 Notes . 76

8.3 Limit Inheritance Hierarchy Depth (OOP03) . 76
8.3.1 Reference . 77
8.3.2 Description . 77
8.3.3 Applicable Vulnerability within ISO TR 24772-2 77
8.3.4 Applicable Common Weakness Enumeration 77
8.3.5 Noncompliant Code Example . 78
8.3.6 Compliant Code Example . 78
8.3.7 Notes . 78

8.4 Limit Statically-Dispatched Calls to Primitive Operations (OOP04) 78
8.4.1 Reference . 79
8.4.2 Description . 79
8.4.3 Applicable Vulnerability within ISO TR 24772-2 79
8.4.4 Applicable Common Weakness Enumeration 80
8.4.5 Noncompliant Code Example . 80
8.4.6 Compliant Code Example . 80
8.4.7 Notes . 80

8.5 Use Explicit Overriding Annotations (OOP05) . 81
8.5.1 Reference . 81
8.5.2 Description . 81
8.5.3 Applicable Vulnerability within ISO TR 24772-2 82
8.5.4 Applicable Common Weakness Enumeration 82
8.5.5 Noncompliant Code Example . 82
8.5.6 Compliant Code Example . 83
8.5.7 Notes . 83

8.6 Use Class-wide Pre/Post Contracts (OOP06) . 83
8.6.1 Reference . 83
8.6.2 Description . 84
8.6.3 Applicable Vulnerability within ISO TR 24772-2 84
8.6.4 Applicable Common Weakness Enumeration 84
8.6.5 Noncompliant Code Example . 84
8.6.6 Compliant Code Example . 84
8.6.7 Notes . 84

8.7 Ensure Local Type Consistency (OOP07) . 85
8.7.1 Reference . 85
8.7.2 Description . 85
8.7.3 Applicable Vulnerability within ISO TR 24772-2 87
8.7.4 Applicable Common Weakness Enumeration 87
8.7.5 Noncompliant Code Example . 87
8.7.6 Compliant Code Example . 88
8.7.7 Notes . 89

9 Software Engineering (SWE) 91
9.1 Use SPARK Extensively (SWE01) . 91

9.1.1 Reference . 92
9.1.2 Description . 92
9.1.3 Applicable Vulnerability within ISO TR 24772-2 92
9.1.4 Applicable Common Weakness Enumeration 92
9.1.5 Noncompliant Code Example . 92
9.1.6 Compliant Code Example . 92
9.1.7 Notes . 92

9.2 Enable Optional Warnings and Treat As Errors (SWE02) 93
9.2.1 Reference . 93
9.2.2 Description . 93
9.2.3 Applicable Vulnerability within ISO TR 24772-2 94
9.2.4 Applicable Common Weakness Enumeration 94
9.2.5 Noncompliant Code Example . 94

vi

9.2.6 Compliant Code Example . 94
9.2.7 Notes . 94

9.3 Use a Static Analysis Tool Extensively (SWE03) 95
9.3.1 Reference . 95
9.3.2 Description . 95
9.3.3 Applicable Vulnerability within ISO TR 24772-2 96
9.3.4 Applicable Common Weakness Enumeration 96
9.3.5 Noncompliant Code Example . 96
9.3.6 Compliant Code Example . 96
9.3.7 Notes . 96

9.4 Hide Implementation Artifacts (SWE04) . 96
9.4.1 Reference . 97
9.4.2 Description . 97
9.4.3 Applicable Vulnerability within ISO TR 24772-2 97
9.4.4 Applicable Common Weakness Enumeration 97
9.4.5 Noncompliant Code Example . 97
9.4.6 Compliant Code Example . 98
9.4.7 Notes . 98

10References 99

Bibliography 101

vii

viii

Guidelines for Safe and Secure Ada / SPARK

Warning

This version of the website contains UNPUBLISHED contents. Please do not share it
externally!

Copyright © 2024, AdaCore
This book is published under a CC BY-SA license, which means that you can copy, redis-
tribute, remix, transform, and build upon the content for any purpose, even commercially,
as long as you give appropriate credit, provide a link to the license, and indicate if changes
were made. If you remix, transform, or build upon the material, you must distribute your
contributions under the same license as the original. You can find license details on this
page1

This document provides a reasonable set of coding standards to be applied to Ada/SPARK
source code. The contents can be used as-is, or customized for a particular project.
This document was originally written by Patrick Rogers, and modified by Michael Frank.

1 http://creativecommons.org/licenses/by-sa/4.0

CONTENTS 1

http://creativecommons.org/licenses/by-sa/4.0
http://creativecommons.org/licenses/by-sa/4.0

Guidelines for Safe and Secure Ada / SPARK

2 CONTENTS

CHAPTER

ONE

INTRODUCTION

Ada is a general purpose, high-level programming language designed to support the con-
struction of long-lived, highly-reliable applications. Like all general-purpose languages, only
a subset of the full language is appropriate for safety-critical applications because the full
language includes facilities that are difficult to analyze and verify to the degree required.
This document facilitates identification of subsets appropriate for the highest levels of in-
tegrity, including safety-critical applications.
SPARK is a statically verifiable subset of Ada designed specifically for the most critical ap-
plications. Ada constructs not amenable to verification are precluded, such as arbitrary use
of access types and full tasking. SPARK is also a superset of Ada, with additional contracts
for specifying and verifying programs. Many of the guidelines (and more) are implicit in the
design of SPARK.
Therefore, this document defines guidelines for the development of high-integrity, safety-
critical applications in either the Ada or SPARK programming languages, or both (because
the two can be mixed).

1.1 Scope

This document provides guidelines for development decisions, both at the system level and
at the unit level, regarding the use of the programming languages Ada and SPARK, as well
as related tools, such as static analyzers and unit test generators. It is not concerned with
presentation issues such as naming, use of whitespace, or the like.

1.2 Structure

Rather than defining a specific set of rules defining a single subset, this document defines
a set of criteria, in the form of guidelines, used by system architects to identify project-
specific subsets appropriate to a given project.
The guidelines are separated into related categories, such as storage management, object-
oriented programming, concurrency management, and so on. Each guideline is in a sepa-
rate table, specifying the rule name, a unique identifier, and additional attributes common
to each table.

3

Guidelines for Safe and Secure Ada / SPARK

1.3 Enforcement

Detection and enforcement mechanisms are indicated for each guideline. These mech-
anisms typically consist of the application of a language standard pragma named Re-
strictions, with policy-specific restriction identifiers given as parameters to the pragma
[AdaRM2016]. Violations of the given restrictions are then detected and enforced by the
Ada compiler.
Alternatively, the AdaCore GNATcheck utility program has rules precisely corresponding
to those restriction identifiers, with the same degree of detection and enforcement. For
example, the language restriction identifier No_Unchecked_Deallocation corresponds to
the GNATcheck +RRestrictions:No_Unchecked_Deallocation rule.
The advantage of GNATcheck over the compiler is that all generated messages will be col-
lected in the GNATcheck report that can be used as evidence of the level of adherence to
the coding standard. In addition, GNATcheck provides a mechanism to deal with accepted
exemptions.
In some cases the enforcement mechanism is the SPARK language and analyzer. Many of
the guidelines (and more) are implicit in the design of SPARK and are, therefore, automati-
cally enforced.
In some (very) rare cases the enforcement mechanism is manual program inspection, al-
though alternatives (e.g., SPARK) are usually available and recommended. These guidelines
are included because they are considered invaluable in this domain.

1.4 About the Rules

Although we refer to them as rules in the tables for the sake of brevity, these entries should
be considered guidance because they require both thought and consideration of project-
specific characteristics. For example, in some cases the guidance is to make a selection
from among a set of distinct enumerated policies. In other cases a single guideline should
be followed but not without some exceptional situations allowing it to be violated. The
project lead should consider which guidelines to apply and how best to apply each guideline
selected.

1.4.1 Mapping to Other Standards

Many of these rules can also be considered good programming practices. As such, many
of them can be directly correlated to the ISO/IEC Guidance to Avoiding Vulnerabilities in
Programming Languages [TR24772]. When a rule addresses one of these vulnerabilities, it
is listed in the appropriate subsection.
In addition, MITRE's list of Common Weakness Enumerations [MITRE_CWE] contains many
software issues that can be addressed by rules within this standard. Where appropriate,
each rule lists the CWE(s) that can be addressed. Note that software CWEs tend to be
generalized across all languages, so that many of the weaknesses may be prevented by
the language itself. For this reason, the CWEs identified within this document specifically
address vulnerabilities that would not be addressed by the Ada language itself (i.e., using
the language is not sufficient to prevent the vulnerability).

4 Chapter 1. Introduction

CHAPTER

TWO

DEFINITIONS

This section contains terms and values used in the definitions of the rules set forth in this
chapter.

2.1 Level

Level is the compliance level for the rule. Possible values are:
Mandatory

Non-compliance with a Mandatory recommendation level corresponds to a
high risk of a software bug. There would need to be a good reason for non-
conformity to a mandatory rule and, although it is accepted that exceptional
cases may exist, any non-conformance should be accompanied by a clear
technical explanation of the exceptional circumstance.

Required
Non-compliance with a Required recommendation level corresponds to a
medium to high risk of a software bug. Much like a Mandatory recom-
mendation, there would need to be a good reason for non-conformity to a
required rule. Although it is accepted that more exceptional cases may exist,
non-conformance should be accompanied by a clear technical explanation of
the exceptional circumstance.

Advisory
Failure to follow an Advisory recommendation does not necessarily result in
a software bug; the risk of a direct correlation between non-conformance of
an advisory rule and a software bug is low. Non-compliance with an advisory
recommendation level does not require a supporting technical explanation,
however, as the quality of the code may be impacted, the reason for the
non-conformance should be understood.

2.2 Remediation

Remediation indicates the the level of difficulty to modify/update code that does not follow
this particular rule.

High
Failure to follow this rule will likely cause an unreasonable amount of modifi-
cations/updates to bring the code base into compliance.

Medium
Failure to follow this rule will likely cause a large amount of modifica-
tions/updates to bring the code base into compliance, but those changes
may still be cost-effective.

5

Guidelines for Safe and Secure Ada / SPARK

Low
Failure to follow this rule may cause a small amount of modifications/updates
to bring the code base into compliance, but those changes will be minor
compared to the benefit.

N/A
This rule is more of a design decision (as opposed to a coding flaw) and
therefore, if the rule is violated, it is done so with a specific purpose.

6 Chapter 2. Definitions

CHAPTER

THREE

DYNAMIC STORAGE MANAGEMENT (DYN)

Goal
Maintainability

✓
Reliability

✓
Portability
Performance

✓
Security

✓
Description

Have a plan for managing dynamic memory allocation and deallocation.
Rules

DYN01, DYN02, DYN03, DYN04, DYN05, DYN06
In Ada, objects are created by being either declared or allocated. Declared objects may
be informally thought of as being created "on the stack" although such details are not
specified by the language. Allocated objects may be thought of as being allocated "from the
heap", which is, again, an informal term. Allocated objects are created by the evaluation of
allocators represented by the reserved word new and, unlike declared objects, have lifetimes
independent of scope.
The terms static and dynamic tend to be used in place of declared and allocated, although
in traditional storage management terminology all storage allocation in Ada is dynamic. In
the following discussion, the term dynamic allocation refers to storage that is allocated by
allocators. Static object allocation refers to objects that are declared. Deallocation refers
to the reclamation of allocated storage.
Unmanaged dynamic storage allocation and deallocation can lead to storage exhaustion;
the required analysis is difficult under those circumstances. Furthermore, access values
can establish aliases that complicate verification, and explicit deallocation of dynamic stor-
age can lead to specific errors (e.g., "double free", "use after free") having unpredictable
results. As a result, the prevalent approach to storage management in high-integrity sys-
tems is to disallow dynamic management techniques completely. [SEI-C] [MISRA2013]
[Holzmann2006] [ISO2000]
However, restricted forms of storage management and associated feature usage can sup-
port the necessary reliability and analyzability characteristics while retaining sufficient ex-
pressive power to justify the analysis expense. The following sections present possible
approaches, including the traditional approach in which no dynamic behavior is allowed.
Individual projects may then choose which storage management approach best fits their
requirements and apply appropriate tailoring, if necessary, to the specific guidelines.
Realization

There is a spectrum ofmanagement schemes possible, trading ease of analysis against

7

Guidelines for Safe and Secure Ada / SPARK

increasing expressive power. At one end there is no dynamic memory allocation (and
hence, deallocation) allowed, making analysis trivial. At the other end, nearly the
full expressive power of the Ada facility is available, but with analyzability partially
retained. In the latter, however, the user must create the allocators in such a manner
as to ensure proper behavior.

Rule DYN01 is Required, as it avoids problematic features whatever the strategy chosen.
Rules DYN02-05 are marked as Advisory, because one of them should be chosen and en-
forced throughout a given software project.

3.1 Common High Integrity Restrictions (DYN01)

Level → Required
Category

Safety
✓

Cyber
✓

Goal
Maintainability

✓
Reliability

✓
Portability
Performance
Security

✓
Remediation → Low
Verification Method → Compiler restrictions

3.1.1 Reference

Ada Reference Manual: H.4 High Integrity Restrictions2

3.1.2 Description

The following restrictions must be in effect:
• No_Anonymous_Allocators

• No_Coextensions

• No_Access_Parameter_Allocators

• Immediate_Reclamation

The first three restrictions prevent problematic usage that, for example, may cause un-
reclaimed (and unreclaimable) storage. The last restriction ensures any storage allocated
by the compiler at run-time for representing objects is reclaimed at once. (That restriction
does not apply to objects created by allocators in the application.)

2 http://www.ada-auth.org/standards/12rm/html/RM-H-4.html

8 Chapter 3. Dynamic Storage Management (DYN)

http://www.ada-auth.org/standards/12rm/html/RM-H-4.html

Guidelines for Safe and Secure Ada / SPARK

3.1.3 Applicable Vulnerability within ISO TR 24772-2

• 4.10 Storage Pool

3.1.4 Applicable Common Weakness Enumeration

• CWE-401 - Missing Release of Memory after Effective Lifetime3

• CWE-415 - Double Free4

• CWE-416 - Use After Free5

3.1.5 Noncompliant Code Example

For No_Anonymous_Allocators:

X : access String := new String'("Hello");
...
X := new String'("Hello");

For No_Coextensions:

type Object (Msg : access String) is ...
Obj : Object (Msg => new String'("Hello"));

For No_Access_Parameter_Allocators:

procedure P (Formal : access String);
...
P (Formal => new String'("Hello"));

3.1.6 Compliant Code Example

For No_Anonymous_Allocators, use a named access type:

type String_Reference is access all String;
S : constant String_Reference := new String'("Hello");
X : access String := S;
...
X := S;

For No_Coextensions, use a variable of a named access type:

type Object (Msg : access String) is ...
type String_Reference is access all String;
S : String_Reference := new String'("Hello");
Obj : Object (Msg => S);

For No_Access_Parameter_Allocators, use a variable of a named access type:

3 https://cwe.mitre.org/data/definitions/401.html
4 https://cwe.mitre.org/data/definitions/415.html
5 https://cwe.mitre.org/data/definitions/416.html

3.1. Common High Integrity Restrictions (DYN01) 9

https://cwe.mitre.org/data/definitions/401.html
https://cwe.mitre.org/data/definitions/415.html
https://cwe.mitre.org/data/definitions/416.html

Guidelines for Safe and Secure Ada / SPARK

procedure P (Formal : access String);
type String_Reference is access all String;
S : String_Reference := new String'("Hello");
...
P (Formal => S);

3.1.7 Notes

The compiler will detect violations of the first three restrictions. Note that GNATcheck can
detect violations in addition to the compiler.
The fourth restriction is a directive for implementation behavior, not subject to source-based
violation detection.

3.2 Traditional Static Allocation Policy (DYN02)

Level → Advisory
Category

Safety
✓

Cyber
✓

Goal
Maintainability

✓
Reliability

✓
Portability
Performance
Security

✓
Remediation → Low
Verification Method → Compiler restrictions

3.2.1 Reference

MISRA C Dir 4.12: "Dynamic memory allocation shall not be used."

10 Chapter 3. Dynamic Storage Management (DYN)

Guidelines for Safe and Secure Ada / SPARK

3.2.2 Description

The following restrictions must be in effect:
• No_Allocators

• No_Task_Allocators

Under the traditional approach, no dynamic allocations and no deallocations occur. Only
declared objects are used and no access types of any kind appear in the code.
Without allocations there is no issue with deallocation as there would be nothing to deallo-
cate. Heap storage exhaustion and fragmentation are clearly prevented although storage
may still be exhausted due to insufficient stack size allotments.
In this approach the following constructs are not allowed:
• Allocators
• Access-to-constant access types
• Access-to-variable access types
• User-defined storage pools
• Unchecked Deallocations

3.2.3 Applicable Vulnerability within ISO TR 24772-2

• 4.10 Storage Pool

3.2.4 Applicable Common Weakness Enumeration

• CWE-401 - Missing Release of Memory after Effective Lifetime6

• CWE-758 - Reliance on Undefined, Unspecified, or Implementation-Defined Behavior7

• CWE-771 - Missing Reference to Active Allocated Resource8

• CWE-1325 - Improperly Controlled Sequential Memory Allocation9

3.2.5 Noncompliant Code Example

Any code using the constructs listed above.
6 https://cwe.mitre.org/data/definitions/401.html
7 https://cwe.mitre.org/data/definitions/758.html
8 https://cwe.mitre.org/data/definitions/771.html
9 https://cwe.mitre.org/data/definitions/1325.html

3.2. Traditional Static Allocation Policy (DYN02) 11

https://cwe.mitre.org/data/definitions/401.html
https://cwe.mitre.org/data/definitions/758.html
https://cwe.mitre.org/data/definitions/771.html
https://cwe.mitre.org/data/definitions/1325.html

Guidelines for Safe and Secure Ada / SPARK

3.2.6 Compliant Code Example

N/A

3.2.7 Notes

The compiler, and/or GNATcheck, will detect violations of the restrictions.

3.3 Access Types Without Allocators Policy (DYN03)

Level → Advisory
Category

Safety
✓

Cyber
✓

Goal
Maintainability

✓
Reliability

✓
Portability
Performance
Security

✓
Remediation → Low
Verification Method → Compiler restrictions

3.3.1 Reference

MISRA C Rule 21.3: "The memory allocation and deallocation functions of <stdlib.h> shall
not be used."

3.3.2 Description

The following restrictions must be in effect:
• No_Allocators

• No_Dependence => Ada.Unchecked_Deallocation

In this approach dynamic access values are only created via the attribute 'Access applied
to aliased objects. Allocation and deallocation never occur. As a result, storage exhaustion
cannot occur because no dynamic allocations occur. Fragmentation cannot occur because
there are no deallocations.
In this approach the following constructs are not allowed:
• Allocators

12 Chapter 3. Dynamic Storage Management (DYN)

Guidelines for Safe and Secure Ada / SPARK

• User-defined storage pools
• Unchecked Deallocations

Aspects should be applied to all access types in this approach, specifying a value of zero for
the storage size. Although the restriction No_Allocators is present, such clauses may be
necessary to prevent any default storage pools from being allocated for the access types,
even though the pools would never be used. A direct way to accomplish this is to use
pragma Default_Storage_Pool with a parameter of null like so:

pragma Default_Storage_Pool (null);

The above would also ensure no allocations can occur with access types that have the
default pool as their associated storage pool (per Ada Reference Manual: 13.11.3 (6.1/3)
Default Storage Pools10).

3.3.3 Applicable Vulnerability within ISO TR 24772-2

• 6.14 Dangling reference to heap [XYK]

3.3.4 Applicable Common Weakness Enumeration

• CWE-401 - Missing Release of Memory after Effective Lifetime11

• CWE-415 - Double Free12

• CWE-416 - Use After Free13

• CWE-771 - Missing Reference to Active Allocated Resource14

• CWE-1325 - Improperly Controlled Sequential Memory Allocation15

3.3.5 Noncompliant Code Example

Any code using the constructs listed above.

3.3.6 Compliant Code Example

type Descriptor is ...;
type Descriptor_Ref is access all Descriptor;
...
Device : aliased Descriptor;
...
P : Descriptor_Ref := Device'Access;
...

10 http://www.ada-auth.org/standards/12rm/html/RM-13-11-3.html
11 https://cwe.mitre.org/data/definitions/401.html
12 https://cwe.mitre.org/data/definitions/415.html
13 https://cwe.mitre.org/data/definitions/416.html
14 https://cwe.mitre.org/data/definitions/771.html
15 https://cwe.mitre.org/data/definitions/1325.html

3.3. Access Types Without Allocators Policy (DYN03) 13

http://www.ada-auth.org/standards/12rm/html/RM-13-11-3.html
http://www.ada-auth.org/standards/12rm/html/RM-13-11-3.html
https://cwe.mitre.org/data/definitions/401.html
https://cwe.mitre.org/data/definitions/415.html
https://cwe.mitre.org/data/definitions/416.html
https://cwe.mitre.org/data/definitions/771.html
https://cwe.mitre.org/data/definitions/1325.html

Guidelines for Safe and Secure Ada / SPARK

3.3.7 Notes

The compiler, and/or GNATcheck, will detect violations of the restrictions.

3.4 Minimal Dynamic Allocation Policy (DYN04)

Level → Advisory
Category

Safety
✓

Cyber
✓

Goal
Maintainability

✓
Reliability

✓
Portability
Performance
Security

Remediation → Low
Verification Method → Compiler restrictions

3.4.1 Reference

Power of Ten rule 3: "Do not use dynamic memory allocation after initialization."

3.4.2 Description

The following restrictions must be in effect:
• No_Local_Allocators

• No_Dependence => Ada.Unchecked_Deallocation

In this approach dynamic allocation is only allowed during "start-up" and no later. Dealloca-
tions never occur. As a result, storage exhaustion should never occur assuming the initial
allotment is sufficient. This assumption is as strong as when using only declared objects on
the "stack" because in that case a sufficient initial storage allotment for the stack must be
made.
In this approach the following constructs are not allowed:
• Unchecked Deallocations

Note that some operating systems intended for this domain directly support this policy.

14 Chapter 3. Dynamic Storage Management (DYN)

Guidelines for Safe and Secure Ada / SPARK

3.4.3 Applicable Vulnerability within ISO TR 24772-2

• 4.10 Storage Pool

3.4.4 Applicable Common Weakness Enumeration

• CWE-401 - Missing Release of Memory after Effective Lifetime16

• CWE-415 - Double Free17

• CWE-416 - Use After Free18

• CWE-459 - Incomplete Cleanup19

• CWE-771 - Missing Reference to Active Allocated Resource20

• CWE-1325 - Improperly Controlled Sequential Memory Allocation21

3.4.5 Noncompliant Code Example

Any code using the constructs listed above.

3.4.6 Compliant Code Example

Code performing dynamic allocations any time prior to an arbitrary point designated as the
end of the "startup" interval.

3.4.7 Notes

The compiler, and/or GNATcheck, will detect violations of the restrictions.

3.5 User-Defined Storage Pools Policy (DYN05)

Level → Advisory
Category

Safety
✓

Cyber
✓

Goal
Maintainability

✓
Reliability

✓
16 https://cwe.mitre.org/data/definitions/401.html
17 https://cwe.mitre.org/data/definitions/415.html
18 https://cwe.mitre.org/data/definitions/416.html
19 https://cwe.mitre.org/data/definitions/459.html
20 https://cwe.mitre.org/data/definitions/771.html
21 https://cwe.mitre.org/data/definitions/1325.html

3.5. User-Defined Storage Pools Policy (DYN05) 15

https://cwe.mitre.org/data/definitions/401.html
https://cwe.mitre.org/data/definitions/415.html
https://cwe.mitre.org/data/definitions/416.html
https://cwe.mitre.org/data/definitions/459.html
https://cwe.mitre.org/data/definitions/771.html
https://cwe.mitre.org/data/definitions/1325.html

Guidelines for Safe and Secure Ada / SPARK

Portability
Performance
Security

✓
Remediation → Low
Verification Method → Code inspection

3.5.1 Reference

MISRA C Rule 21.3: "The memory allocation and deallocation functions of <stdlib.h> shall
not be used."

3.5.2 Description

There are two issues that make storage utilization analysis difficult:
1. the predictability of the allocation and deallocation implementation, and
2. how access values are used by the application.

The behavior of the underlying implementation is largely undefined and may, for example,
consist of calls to the operating system (if present). Application code canmanipulate access
values beyond the scope of analysis.
Under this policy, the full expressive power of access-to-object types is provided but one of
the two areas of analysis difficulty is removed. Specifically, predictability of the allocation
and deallocation implementation is achieved via user-defined storage pools. With these
storage pools, the implementation of allocation (new) and deallocation (instances of Ada.
Unchecked_Deallocation) is defined by the pool type.
If the pool type is implemented with fixed-size blocks on the stack, allocation and dealloca-
tion timing behavior are predictable.
Such an implementation would also be free from fragmentation.
Given an analysis providing the worst-case allocations and deallocations, it would be pos-
sible to verify that pool exhaustion does not occur. However, as mentioned such analysis
can be quite difficult. A mitigation would be the use of the "owning" access-to-object types
provided by SPARK.
In this approach no storage-related constructs are disallowed unless the SPARK subset is
applied.

3.5.3 Applicable Vulnerability within ISO TR 24772-2

• 4.10 Storage Pool

16 Chapter 3. Dynamic Storage Management (DYN)

Guidelines for Safe and Secure Ada / SPARK

3.5.4 Applicable Common Weakness Enumeration

• CWE-401 - Missing Release of Memory after Effective Lifetime22

• CWE-415 - Double Free23

• CWE-416 - Use After Free24

• CWE-459 - Incomplete Cleanup25

3.5.5 Noncompliant Code Example

Allocation via an access type not tied to a user-defined storage pool.

3.5.6 Compliant Code Example

Heap : Sequential_Fixed_Blocks.Storage_Pool
(Storage_Size => Required_Storage_Size,
Element_Size => Representable_Obj_Size,
Alignment => Representation_Alignment);

type Pointer is access all Unsigned_Longword with
Storage_Pool => Heap;

Ptr : Pointer;
...
Ptr := new Unsigned_Longword; -- from Heap

3.5.7 Notes

Enforcement of this approach can only be provided by manual code review unless SPARK is
used.
However, the User-Defined Storage Pools Policy can be enforced statically by specifying De-
fault_Storage_Pool (null). This essentially requires all access types to have a specified
storage pool if any allocators are used with the access type.

3.6 Statically Determine Maximum Stack Requirements
(DYN06)

Level → Required
Category

Safety
✓

Cyber
✓

Goal
22 https://cwe.mitre.org/data/definitions/401.html
23 https://cwe.mitre.org/data/definitions/415.html
24 https://cwe.mitre.org/data/definitions/416.html
25 https://cwe.mitre.org/data/definitions/459.html

3.6. Statically Determine Maximum Stack Requirements (DYN06) 17

https://cwe.mitre.org/data/definitions/401.html
https://cwe.mitre.org/data/definitions/415.html
https://cwe.mitre.org/data/definitions/416.html
https://cwe.mitre.org/data/definitions/459.html

Guidelines for Safe and Secure Ada / SPARK

Maintainability
✓

Reliability
✓

Portability
Performance
Security

Remediation → Low
Verification Method → Static analysis tools

3.6.1 Reference

N/A

3.6.2 Description

Each Ada application task has a stack, as does the "environment task" that elaborates li-
brary packages and calls the main subprogram. A tool to statically determine the maximum
storage required for these stacks must be used, per task.
This guideline concerns another kind of dynamic memory utilization. The previous guide-
lines concerned the management of storage commonly referred to as the "heap." This
guideline concerns the storage commonly referred to as the "stack." (Neither term is de-
fined by the language, but both are commonly recognized and are artifacts of the underlying
run-time library or operating system implementation.)

3.6.3 Applicable Vulnerability within ISO TR 24772-2

• 4.10 Storage Pool

3.6.4 Applicable Common Weakness Enumeration

• CWE-770 - Allocation of Resources Without Limits or Throttling26

• CWE-789 - Uncontrolled Memory Allocation27

3.6.5 Noncompliant Code Example

N/A
26 https://cwe.mitre.org/data/definitions/770.html
27 https://cwe.mitre.org/data/definitions/789.html

18 Chapter 3. Dynamic Storage Management (DYN)

https://cwe.mitre.org/data/definitions/770.html
https://cwe.mitre.org/data/definitions/789.html

Guidelines for Safe and Secure Ada / SPARK

3.6.6 Compliant Code Example

N/A

3.6.7 Notes

The GNATstack28 tool can statically determine the maximum requirements per task.

28 http://docs.adacore.com/live/wave/gnatstack/html/gnatstack_ug/index.html

3.6. Statically Determine Maximum Stack Requirements (DYN06) 19

http://docs.adacore.com/live/wave/gnatstack/html/gnatstack_ug/index.html

Guidelines for Safe and Secure Ada / SPARK

20 Chapter 3. Dynamic Storage Management (DYN)

CHAPTER

FOUR

SAFE RECLAMATION (RCL)

Goal
Maintainability

✓
Reliability

✓
Portability
Performance

✓
Security

✓
Description

Related to managing dynamic storage at the system (policy) level, these statement-
level rules concern the safe reclamation of access (pointer) values.

Rules
RCL01, RCL02, RCL03

4.1 No Multiple Reclamations (RCL01)

Level → Mandatory
Category

Safety
✓

Cyber
✓

Goal
Maintainability

✓
Reliability

✓
Portability

✓
Performance
Security

✓

21

Guidelines for Safe and Secure Ada / SPARK

Remediation → High
Verification Method → Code inspection

4.1.1 Reference

N/A

4.1.2 Description

Never deallocate the storage designated by a given access value more than once.

4.1.3 Applicable Vulnerability within ISO TR 24772-2

• 6.39 Memory leak and heap fragmentation [XYL]

4.1.4 Applicable Common Weakness Enumeration

• CWE-415 - Double Free29

• CWE-416 - Use After Free30

4.1.5 Noncompliant Code Example

type String_Reference is access all String;
procedure Free is new Ada.Unchecked_Deallocation

(Object => String, Name => String_Reference);
S : String_Reference := new String'("Hello");
Y : String_Reference;

begin
Y := S;
Free (S);
Free (Y);

4.1.6 Compliant Code Example

Remove the call to Free (Y).
29 https://cwe.mitre.org/data/definitions/415.html
30 https://cwe.mitre.org/data/definitions/416.html

22 Chapter 4. Safe Reclamation (RCL)

https://cwe.mitre.org/data/definitions/415.html
https://cwe.mitre.org/data/definitions/416.html

Guidelines for Safe and Secure Ada / SPARK

4.1.7 Notes

Enforcement of this rule can be provided by manual code review, unless deallocation is for-
bidden via No_Unchecked_Deallocation or SPARK is used, as ownership analysis in SPARK
detects such cases. Note that storage utilization analysis tools such as Valgrind can usually
find this sort of error. In addition, a GNAT-defined storage pool is available to help debug
such errors.

4.2 Only Reclaim Allocated Storage (RCL02)

Level → Mandatory
Category

Safety
✓

Cyber
✓

Goal
Maintainability

✓
Reliability

✓
Portability

✓
Performance
Security

✓
Remediation → High
Verification Method → Code inspection

4.2.1 Reference

[SEI-C] MEM34-C: Only Free Memory Allocated Dynamically

4.2.2 Description

Only deallocate storage that was dynamically allocated by the evaluation of an allocator
(i.e., new).
This is possible because Ada allows creation of access values designating declared (aliased)
objects.

4.2. Only Reclaim Allocated Storage (RCL02) 23

Guidelines for Safe and Secure Ada / SPARK

4.2.3 Applicable Vulnerability within ISO TR 24772-2

• 6.39 Memory leak and heap fragmentation [XYL]

4.2.4 Applicable Common Weakness Enumeration

• CWE-590 - Free of Memory not on the Heap31

4.2.5 Noncompliant Code Example

type String_Reference is access all String;
procedure Free is new Ada.Unchecked_Deallocation

(Object => String, Name => String_Reference);
S : aliased String := "Hello";
Y : String_Reference := S'Access;

begin
Free (Y);

4.2.6 Compliant Code Example

Remove the call to Free (Y).

4.2.7 Notes

Enforcement of this rule can only be provided by manual code review, unless deallocation
is forbidden via No_Unchecked_Deallocation.

4.3 Only Reclaim to the Same Pool (RCL03)

Level → Mandatory
Category

Safety
✓

Cyber
✓

Goal
Maintainability

✓
Reliability

✓
Portability

✓
Performance
Security

✓
31 https://cwe.mitre.org/data/definitions/590.html

24 Chapter 4. Safe Reclamation (RCL)

https://cwe.mitre.org/data/definitions/590.html

Guidelines for Safe and Secure Ada / SPARK

Remediation → High
Verification Method → Code inspection

4.3.1 Reference

N/A

4.3.2 Description

When deallocating, ensure that the pool to which the storage will be returned is the same
pool from which it was allocated. Execution is erroneous otherwise, meaning anything can
happen (Ada Reference Manual: 13.11.2 (16) Unchecked Storage Deallocation32).
Each access type has an associated storage pool, either implicitly by default, or explicitly
with a storage pool specified by the programmer. The implicit default pool might not be
the same pool used for another access type, even an access type designating the same
subtype.

4.3.3 Applicable Vulnerability within ISO TR 24772-2

• 6.39 Memory leak and heap fragmentation [XYL]

4.3.4 Applicable Common Weakness Enumeration

• CWE-401 - Missing Release of Memory after Effective Lifetime33

4.3.5 Noncompliant Code Example

type Pointer1 is access all Integer;
type Pointer2 is access all Integer;
P1 : Pointer1;
P2 : Pointer2;
procedure Free is new Ada.Unchecked_Deallocation

(Object => Integer, Name => Pointer2);
begin

P1 := new Integer;
P2 := Pointer2 (P1);
Call_Something (P2.all);
...
Free (P2);

In the above, P1.all was allocated from Pointer1'Storage_Pool, but, via the type con-
version, the code above is attempting to return it to Pointer2'Storage_Pool, which may
be a different pool.
32 http://www.ada-auth.org/standards/12rm/html/RM-13-11-2.html
33 https://cwe.mitre.org/data/definitions/401.html

4.3. Only Reclaim to the Same Pool (RCL03) 25

http://www.ada-auth.org/standards/12rm/html/RM-13-11-2.html
https://cwe.mitre.org/data/definitions/401.html

Guidelines for Safe and Secure Ada / SPARK

4.3.6 Compliant Code Example

type Pointer1 is access all Integer;
type Pointer2 is access all Integer;
P1 : Pointer1;
P2 : Pointer2;
procedure Free is new Ada.Unchecked_Deallocation

(Object => Integer, Name => Pointer1);
begin

P1 := new Integer;
P2 := Pointer2 (P1);
Call_Something (P2.all);
...
Free (P1);

4.3.7 Notes

Enforcement of this rule can only be provided by manual code review, unless deallocation
is forbidden via No_Unchecked_Deallocation.

26 Chapter 4. Safe Reclamation (RCL)

CHAPTER

FIVE

CONCURRENCY (CON)

Goal
Maintainability

✓
Reliability

✓
Portability

✓
Performance

✓
Security

Description
Have a plan for managing the use of concurrency in high-integrity applications having
real-time requirements.

Rules
CON01, CON02, CON03

The canonical approach to applications having multiple periodic and aperiodic activities is
to map those activities onto independent tasks, i.e., threads of control. The advantages for
the application are both a matter of software engineering and also ease of implementation.
For example, when the different periods are not harmonics of one another, the fact that
each task executes independently means that the differences are trivially represented. In
contrast, such periods are not easily implemented in a cyclic scheduler, which, by definition,
involves only one (implicit) thread of control with one frame rate.
High integrity applications are subject to a number of stringent analyses, including, for ex-
ample, safety analyses and certification against rigorous industry standards. In addition,
high integrity applications with real-time requirements must undergo timing analysis be-
cause they must be shown to meet deadlines prior to deployment — failure to meet hard
deadlines is unacceptable in this domain.
These analyses are applied both to the application and to the implementation of the un-
derlying run-time library. However, analysis of the complete set of general Ada tasking
features is not tractable, neither technically nor in terms of cost. A subset of the language
is required.
The Ravenscar profile [AdaRM2016] is a subset of the Ada concurrency facilities that sup-
ports determinism, schedulability analysis, constrained memory utilization, and certifica-
tion to the highest integrity levels. Four distinct application domains are specifically in-
tended:
• Hard real-time applications requiring predictability;
• Safety-critical systems requiring formal, stringent certification;
• High-integrity applications requiring formal static analysis and verification;

27

Guidelines for Safe and Secure Ada / SPARK

• Embedded applications requiring both a small memory footprint and low execution
overhead.

Those tasking constructs that preclude analysis at the source level or analysis of the tasking
portion of the underlying run-time library are disallowed.
The Ravenscar profile is necessarily strict in terms of what it removes so that it can support
the stringent analyses, such as safety analysis, that go beyond the timing analysis required
for real-time applications. In addition, the strict subset facilitates that timing analysis in the
first place.
However, not all high-integrity applications are amenable to expression in the Ravenscar
profile subset. The Jorvik profile [AdaRM2020] is an alternative subset of the Ada concur-
rency facilities. It is based directly on the Ravenscar profile but removes selected restric-
tions in order to increase expressive power, while retaining analyzability and performance.
As a result, typical idioms for protected objects can be used, for example, and relative de-
lays statements are allowed. Timing analysis is still possible but slightly more complicated,
and the underlying run-time library is slightly larger and more complex.
When the most stringent analyses are required and the tightest timing is involved, use the
Ravenscar profile. When a slight increase in complexity is tolerable, i.e., in those cases not
undergoing all of these stringent analyses, consider using the Jorvik profile.

5.1 Use the Ravenscar Profile (CON01)

Level → Advisory
Category

Safety
✓

Cyber
✓

Goal
Maintainability

✓
Reliability

✓
Portability

✓
Performance

✓
Security

Remediation → High
Verification Method → GNATcheck rule: uses_profile:ravenscar
Mutually Exclusive → CON02

28 Chapter 5. Concurrency (CON)

Guidelines for Safe and Secure Ada / SPARK

5.1.1 Reference

Ada Reference Manual: D.13 The Ravenscar and Jorvik Profiles34

5.1.2 Description

The following profile must be in effect:

pragma Profile (Ravenscar);

The profile is equivalent to the following set of pragmas:

pragma Task_Dispatching_Policy (FIFO_Within_Priorities);
pragma Locking_Policy (Ceiling_Locking);
pragma Detect_Blocking;
pragma Restrictions (

No_Abort_Statements,
No_Dynamic_Attachment,
No_Dynamic_CPU_Assignment,
No_Dynamic_Priorities,
No_Implicit_Heap_Allocations,
No_Local_Protected_Objects,
No_Local_Timing_Events,
No_Protected_Type_Allocators,
No_Relative_Delay,
No_Requeue_Statements,
No_Select_Statements,
No_Specific_Termination_Handlers,
No_Task_Allocators,
No_Task_Hierarchy,
No_Task_Termination,
Simple_Barriers,
Max_Entry_Queue_Length => 1,
Max_Protected_Entries => 1,
Max_Task_Entries => 0,
No_Dependence => Ada.Asynchronous_Task_Control,
No_Dependence => Ada.Calendar,
No_Dependence => Ada.Execution_Time.Group_Budgets,
No_Dependence => Ada.Execution_Time.Timers,
No_Dependence => Ada.Synchronous_Barriers,
No_Dependence => Ada.Task_Attributes,
No_Dependence => System.Multiprocessors.Dispatching_Domains);

5.1.3 Applicable Vulnerability within ISO TR 24772-2

• 6.59 Concurrency - Activation [GGA]
• 6.60 Concurrency - Directed termination [CGT]
• 6.61 Concurrent data access [CGX]
• 6.62 Concurrency - Premature termination [CGS]
• 6.63 Lock protocol errors [CGM]

34 http://www.ada-auth.org/standards/12rm/html/RM-D-13.html

5.1. Use the Ravenscar Profile (CON01) 29

http://www.ada-auth.org/standards/12rm/html/RM-D-13.html

Guidelines for Safe and Secure Ada / SPARK

5.1.4 Applicable Common Weakness Enumeration

• CWE-362 - Concurrent Execution using Shared Resource with Improper Synchroniza-
tion35

• CWE-366 - Race Condition within a Thread36

• CWE-367 - Time-of-check Time-of-use (TOCTOU) Race Condition37

5.1.5 Noncompliant Code Example

Any code disallowed by the profile. Remediation is high because use of the facilities outside
the subset can be difficult to retrofit into compliance.

task body Task_T is
begin

loop
-- Error: No_Relative_Delay
delay 1.0;
Put_Line ("Hello World");

end loop;
end Task_T;

5.1.6 Compliant Code Example

task body Task_T is
Period : constant Time_Span := Milliseconds (10);
Activation : Time := Clock;

begin
loop

delay until Activation;
Put_Line ("Hello World");
Activation := Activation + Period;

end loop;
end Task_T;

5.1.7 Notes

The Ada builder will detect violations if the programmer specifies this profile or correspond-
ing pragmas. GNATcheck also can detect violations of profile restrictions.
35 https://cwe.mitre.org/data/definitions/362.html
36 https://cwe.mitre.org/data/definitions/366.html
37 https://cwe.mitre.org/data/definitions/367.html

30 Chapter 5. Concurrency (CON)

https://cwe.mitre.org/data/definitions/362.html
https://cwe.mitre.org/data/definitions/362.html
https://cwe.mitre.org/data/definitions/366.html
https://cwe.mitre.org/data/definitions/367.html

Guidelines for Safe and Secure Ada / SPARK

5.2 Use the Jorvik Profile (CON02)

Level → Advisory
Category

Safety
✓

Cyber
✓

Goal
Maintainability

✓
Reliability

✓
Portability

✓
Performance

✓
Security

Remediation → High
Verification Method → GNATcheck rule: uses_profile:jorvik
Mutually Exclusive → CON01

5.2.1 Reference

Ada Reference Manual: D.13 The Ravenscar and Jorvik Profiles38

5.2.2 Description

The following profile must be in effect:

pragma Profile (Jorvik);

The profile is equivalent to the following set of pragmas:

pragma Task_Dispatching_Policy (FIFO_Within_Priorities);
pragma Locking_Policy (Ceiling_Locking);
pragma Detect_Blocking;
pragma Restrictions (

No_Abort_Statements,
No_Dynamic_Attachment,
No_Dynamic_CPU_Assignment,
No_Dynamic_Priorities,
No_Local_Protected_Objects,
No_Local_Timing_Events,
No_Protected_Type_Allocators,
No_Requeue_Statements,
No_Select_Statements,
No_Specific_Termination_Handlers,

(continues on next page)
38 http://www.ada-auth.org/standards/12rm/html/RM-D-13.html

5.2. Use the Jorvik Profile (CON02) 31

http://www.ada-auth.org/standards/12rm/html/RM-D-13.html

Guidelines for Safe and Secure Ada / SPARK

(continued from previous page)
No_Task_Allocators,
No_Task_Hierarchy,
No_Task_Termination,
Pure_Barriers,
Max_Task_Entries => 0,
No_Dependence => Ada.Asynchronous_Task_Control,
No_Dependence => Ada.Execution_Time.Group_Budgets,
No_Dependence => Ada.Execution_Time.Timers,
No_Dependence => Ada.Task_Attributes,
No_Dependence => System.Multiprocessors.Dispatching_Domains);

The following restrictions are part of the Ravenscar profile but not part of the Jorvik profile.

No_Implicit_Heap_Allocations
No_Relative_Delay
Max_Entry_Queue_Length => 1
Max_Protected_Entries => 1
No_Dependence => Ada.Calendar
No_Dependence => Ada.Synchronous_Barriers

Jorvik also replaces restriction Simple_Barriers with Pure_Barriers (a weaker require-
ment than the restriction Simple_Barriers).

5.2.3 Applicable Vulnerability within ISO TR 24772-2

• 6.59 Concurrency - Activation [GGA]
• 6.60 Concurrency - Directed termination [CGT]
• 6.61 Concurrent data access [CGX]
• 6.62 Concurrency - Premature termination [CGS]
• 6.63 Lock protocol errors [CGM]

5.2.4 Applicable Common Weakness Enumeration

• CWE-362 - Concurrent Execution using Shared Resource with Improper Synchroniza-
tion39

• CWE-366 - Race Condition within a Thread40

• CWE-367 - Time-of-check Time-of-use (TOCTOU) Race Condition41

5.2.5 Noncompliant Code Example

Any code disallowed by the profile. Remediation is high because use of the facilities outside
the subset can be difficult to retrofit into compliance.

task body Task_T is
begin

-- Error: Max_Task_Entries => 0
accept Entry_Point do

Put_Line ("Hello World");
(continues on next page)

39 https://cwe.mitre.org/data/definitions/362.html
40 https://cwe.mitre.org/data/definitions/366.html
41 https://cwe.mitre.org/data/definitions/367.html

32 Chapter 5. Concurrency (CON)

https://cwe.mitre.org/data/definitions/362.html
https://cwe.mitre.org/data/definitions/362.html
https://cwe.mitre.org/data/definitions/366.html
https://cwe.mitre.org/data/definitions/367.html

Guidelines for Safe and Secure Ada / SPARK

(continued from previous page)
end Entry_Point;
loop

delay 1.0;
Put_Line ("Ping");

end loop;
end Task_T;

5.2.6 Compliant Code Example

task body Task_T is
begin

delay 1.0;
Put_Line ("Hello World");
loop

delay 1.0;
Put_Line ("Ping");

end loop;
end Task_T;

5.2.7 Notes

The Ada builder will detect violations. GNATcheck can also detect violations.

5.3 Avoid Shared Variables for Inter-task Communica-
tion (CON03)

Level → Advisory
Category

Safety
✓

Cyber
✓

Goal
Maintainability

✓
Reliability

✓
Portability

✓
Performance

✓
Security

Remediation → High
Verification Method → GNATcheck rule: Volatile_Objects_Without_Address_Clauses

5.3. Avoid Shared Variables for Inter-task Communication (CON03) 33

Guidelines for Safe and Secure Ada / SPARK

5.3.1 Reference

Ada Reference Manual: D.13 The Ravenscar Profile42

5.3.2 Description

Although the Ravenscar and Jorvik profiles allow the use of shared variables for inter-task
communication, such use is less robust and less reliable than encapsulating shared vari-
ables within protected objects.

5.3.3 Applicable Vulnerability within ISO TR 24772-2

• 6.56 Undefined behaviour [EWF]

5.3.4 Applicable Common Weakness Enumeration

• CWE-567 - Unsynchronized Access to Shared Data in a Multithreaded Context43

• CWE-667 - Improper Locking44

5.3.5 Noncompliant Code Example

Global_Object : Integer
with Volatile;

function Get return Integer is (Global_Object);

Note that variables marked as Atomic are also Volatile, per the Ada Reference Manual:
C.6 (8/3) Shared Variable Control45

5.3.6 Compliant Code Example

When assigned to a memory address, a Volatile variable can be used to interact with a
memory-mapped device, among other similar usages.

Global_Object : Integer
with Volatile,

Address => To_Address (16#1234_5678#);
function Get return Integer is (Global_Object);

42 http://www.ada-auth.org/standards/12rm/html/RM-D-13.html
43 https://cwe.mitre.org/data/definitions/567.html
44 https://cwe.mitre.org/data/definitions/667.html
45 http://www.ada-auth.org/standards/12rm/html/RM-C-6.html

34 Chapter 5. Concurrency (CON)

http://www.ada-auth.org/standards/12rm/html/RM-D-13.html
https://cwe.mitre.org/data/definitions/567.html
https://cwe.mitre.org/data/definitions/667.html
http://www.ada-auth.org/standards/12rm/html/RM-C-6.html
http://www.ada-auth.org/standards/12rm/html/RM-C-6.html

Guidelines for Safe and Secure Ada / SPARK

5.3.7 Notes

In additon to GNATcheck, SPARK and CodePeer can also detect conflicting access to unpro-
tected variables.

5.3. Avoid Shared Variables for Inter-task Communication (CON03) 35

Guidelines for Safe and Secure Ada / SPARK

36 Chapter 5. Concurrency (CON)

CHAPTER

SIX

ROBUST PROGRAMMING PRACTICE (RPP)

Goal
Maintainability

✓
Reliability

✓
Portability

✓
Performance

✓
Security

✓
Description

These rules promote the production of robust software.
Rules

RPP01, RPP02, RPP03, RPP04, RPP05, RPP06, RPP07, RPP07, RPP08, RPP09, RPP10,
RPP11, RPP12, RPP13, RPP14

6.1 No Use of "others" in Case Constructs (RPP01)

Level → Required
Category

Safety
✓

Cyber
✓

Goal
Maintainability

✓
Reliability

✓
Portability

✓
Performance
Security

37

Guidelines for Safe and Secure Ada / SPARK

Remediation → Low
Verification Method → GNATcheck rule: OTHERS_In_CASE_Statements

6.1.1 Reference

[SEI-C] MSC01-C

6.1.2 Description

Case statement alternatives and case-expressions must not include use of the others dis-
crete choice option. This rule prevents accidental coverage of a choice added after the
initial case statement is written, when an explicit handler was intended for the addition.
Note that this is opposite to typical C guidelines such as [SEI-C] MSC01-C. The reason is that
in C, the default alternative plays the role of defensive code to mitigate the switch state-
ment's non-exhaustivity. In Ada, the case construct is exhaustive: the compiler statically
verifies that for every possible value of the case expression there is a branch alternative,
and there is also a dynamic check against invalid values which serves as implicit defen-
sive code. As a result, Ada's others alternative doesn't play C's defensive code role and
therefore a stronger guideline can be adopted.

6.1.3 Applicable Vulnerability within ISO TR 24772-2

• 6.27 Switch statements and static analysis [CLL]

6.1.4 Applicable Common Weakness Enumeration

• CWE-478 - Missing Default Case in Multiple Condition Expression46

6.1.5 Noncompliant Code Example

case Digit_T (C) is
when '0' | '9' =>

C := Character'succ (C);
when others =>

C := Character'pred (C);
end case;

6.1.6 Compliant Code Example

case Digit_T (C) is
when '0' | '9' =>

C := Character'succ (C);
when '1' | '2' | '3' | '4' | '5' | '6' | '7' | '8' =>

C := Character'pred (C);
end case;

46 https://cwe.mitre.org/data/definitions/478.html

38 Chapter 6. Robust Programming Practice (RPP)

https://cwe.mitre.org/data/definitions/478.html

Guidelines for Safe and Secure Ada / SPARK

6.1.7 Notes

N/A

6.2 No Enumeration Ranges in Case Constructs (RPP02)

Level → Required
Category

Safety
✓

Cyber
✓

Goal
Maintainability

✓
Reliability

✓
Portability

✓
Performance
Security

Remediation → Low
Verification Method → GNATcheck rule: Enumeration_Ranges_In_CASE_Statements

6.2.1 Reference

Similar to RPP01

6.2.2 Description

A range of enumeration literals must not be used as a choice in a case statement or a case
expression. This includes explicit ranges (A .. B), subtypes, and the 'Range attribute.
Much like the use of others in case statement alternatives, the use of ranges makes it pos-
sible for a new enumeration value to be added but not handled with a specific alternative,
when a specific alternative was intended.

6.2.3 Applicable Vulnerability within ISO TR 24772-2

• 6.5 Enumerator issues [CCB]

6.2. No Enumeration Ranges in Case Constructs (RPP02) 39

Guidelines for Safe and Secure Ada / SPARK

6.2.4 Applicable Common Weakness Enumeration

N/A

6.2.5 Noncompliant Code Example

case Digit_T (C) is
when '0' | '9' =>

C := Character'Succ (C);
when '1' .. '8' =>

C := Character'Pred (C);
end case;

6.2.6 Compliant Code Example

case Digit_T (C) is
when '0' | '9' =>

C := Character'Succ (C);
when '1' | '2' | '3' | '4' | '5' | '6' | '7' | '8' =>

C := Character'Pred (C);
end case;

6.2.7 Notes

N/A

6.3 Limited Use of "others" in Aggregates (RPP03)

Level → Advisory
Category

Safety
✓

Cyber
✓

Goal
Maintainability

✓
Reliability

✓
Portability

✓
Performance
Security

Remediation → Low
Verification Method → GNATcheck rule: OTHERS_In_Aggregates

40 Chapter 6. Robust Programming Practice (RPP)

Guidelines for Safe and Secure Ada / SPARK

6.3.1 Reference

Similar to RPP01

6.3.2 Description

Do not use an others choice in an extension aggregate. In record and array aggregates,
do not use an others choice unless it is used either to refer to all components, or to all but
one component.
This guideline prevents accidental provision of a general value for a record component or
array component, when a specific value was intended. This possibility includes the case
in which new components are added to an existing composite type.

6.3.3 Applicable Vulnerability within ISO TR 24772-2

• 6.5 Enumerator issues [CCB]
• 6.27 Switch statements and static analysis [CLL]

6.3.4 Applicable Common Weakness Enumeration

• CWE-478 - Missing Default Case in Multiple Condition Expression47

6.3.5 Noncompliant Code Example

type Record_T is record
Field1 : Integer := 1;
Field2 : Boolean := False;
Field3 : Character := ' ';

end record;
type Array_T is array (Character) of Boolean;
Rec : Record_T := (Field1 => 1,

Field3 => '2',
others => <>);

Arr : Array_T := ('0' .. '9' => True,
others => False);

6.3.6 Compliant Code Example

type Record_T is record
Field1 : Integer := 1;
Field2 : Boolean := False;
Field3 : Character := ' ';

end record;
type Array_T is array (Character) of Boolean;
Rec : Record_T := (Field1 => 1,

others => <>);
Arr : Array_T := (others => False);

47 https://cwe.mitre.org/data/definitions/478.html

6.3. Limited Use of "others" in Aggregates (RPP03) 41

https://cwe.mitre.org/data/definitions/478.html

Guidelines for Safe and Secure Ada / SPARK

6.3.7 Notes

N/A

6.4 No Unassigned Mode-Out Procedure Parameters
(RPP04)

Level → Required
Category

Safety
✓

Cyber
✓

Goal
Maintainability

✓
Reliability

✓
Portability

✓
Performance
Security

Remediation → High
Verification Method → GNATcheck rule: Unassigned_OUT_Parameters

6.4.1 Reference

MISRA C Rule 9.1: "The value of an object with automatic storage duration shall not be read
before it has been set."

6.4.2 Description

For any procedure, all formal parameters of mode out must be assigned a value if the
procedure exits normally. This rule ensures that, upon a normal return, the corresponding
actual parameter has a defined value. Ensuring a defined value is especially important for
scalar parameters because they are passed by value, such that some value is copied out to
the actual. These undefined values can be especially difficult to locate because evaluation
of the actual parameter's value might not occur immediately after the call returns.

42 Chapter 6. Robust Programming Practice (RPP)

Guidelines for Safe and Secure Ada / SPARK

6.4.3 Applicable Vulnerability within ISO TR 24772-2

• 6.32 Passing parameters and return values [CSJ]

6.4.4 Applicable Common Weakness Enumeration

• CWE-457 - Use of Uninitialized Variable48

6.4.5 Noncompliant Code Example

for Value_T use
(Alpha => 2#1#,
Baker => 2#10#,
Charlie => 2#100#,
Dog => 2#1000#,
Invalid => 2#1111#);

procedure Noncompliant (Register : Character;
Registera : out Value_T;
Registerb : out Value_T) is

begin
if Register = 'A' then

Registera := Alpha;
end if;

end Noncompliant;

In the above example, some value is copied back for an output parameter as specified by
Register. The other parameter is not assigned, and on return the value copied to the
actual parameter may not be a valid representation for a value of the type. (We give the
enumeration values a non-standard representation for the sake of illustration, i.e., to make
it more likely that the undefined value is not valid.)

6.4.6 Compliant Code Example

procedure Compliant (Register : Character;
Registera : out Value_T;
Registerb : out Value_T) is

begin
Registera := Invalid;
Registerb := Invalid;
if Register = 'A' then

Registera := Alpha;
end if;

end Compliant;

48 https://cwe.mitre.org/data/definitions/457.html

6.4. No Unassigned Mode-Out Procedure Parameters (RPP04) 43

https://cwe.mitre.org/data/definitions/457.html

Guidelines for Safe and Secure Ada / SPARK

6.4.7 Notes

The GNATcheck rule specified above only detects a trivial case of an unassigned variable
and doesn't provide a guarantee that there is no uninitialized access. It is not a replacement
for a rigorous check for uninitialized access provided by advanced static analysis tools such
as SPARK and CodePeer.
Note that the GNATcheck rule does not check function parameters (as of Ada 2012 functions
can have out parameters). As a result, the better choice is either SPARK or CodePeer.

6.5 No Use of "others" in Exception Handlers (RPP05)

Level → Required
Category

Safety
✓

Cyber
✓

Goal
Maintainability

✓
Reliability

✓
Portability

✓
Performance
Security

Remediation → Low
Verification Method → GNATcheck rule: OTHERS_In_Exception_Handlers

6.5.1 Reference

N/A

6.5.2 Description

Much like the situation with others in case statements and case expressions, the use of
others in exception handlers makes it possible to omit an intended specific handler for an
exception, especially a new exception added to an existing set of handlers. As a result,
a subprogram could return normally without having applied any recovery for the specific
exception occurrence, which is likely a coding error.

44 Chapter 6. Robust Programming Practice (RPP)

Guidelines for Safe and Secure Ada / SPARK

6.5.3 Applicable Vulnerability within ISO TR 24772-2

N/A

6.5.4 Applicable Common Weakness Enumeration

• CWE-396 - Declaration of Catch for Generic Exception49

6.5.5 Noncompliant Code Example

procedure Noncompliant (X : in out Integer) is
begin

X := X * X;
exception

when others =>
X := -1;

end Noncompliant;

6.5.6 Compliant Code Example

procedure Compliant (X : in out Integer) is
begin

X := X * X;
exception

when Constraint_Error =>
X := -1;

end Compliant;

6.5.7 Notes

ISO TR 24772-2: 6.50.2 slightly contradicts this when applying exception handlers around
calls to library routines:
• Put appropriate exception handlers in all routines that call library routines, including
the catch-all exception handler when others =>

• Put appropriate exception handlers in all routines that are called by library routines,
including the catch-all exception handler when others =>

ISO TR 24772-2 also recommends "All tasks should contain an exception handler at the
outer level to prevent silent termination due to unhandled exceptions."
49 https://cwe.mitre.org/data/definitions/396.html

6.5. No Use of "others" in Exception Handlers (RPP05) 45

https://cwe.mitre.org/data/definitions/396.html

Guidelines for Safe and Secure Ada / SPARK

6.6 Avoid Function Side-Effects (RPP06)

Level → Advisory
Category

Safety
✓

Cyber
✓

Goal
Maintainability

✓
Reliability

✓
Portability

✓
Performance
Security

Remediation → Medium
Verification Method → Code inspection

6.6.1 Reference

MISRA C Rule 13.2: "The value of an expression and its persistent side effects shall be the
same under all permitted evaluation orders."

6.6.2 Description

Functions cannot update an actual parameter or global variable.
A side effect occurs when evaluation of an expression updates an object. This rule applies
to function calls, a specific form of expression.
Side effects enable one form of parameter aliasing (see below) and evaluation order de-
pendencies. In general they are a potential point of confusion because the reader expects
only a computation of a value.
There are useful idioms based on functions with side effects. Indeed, a random number
generator expressed as a function must use side effects to update the seed value. So-
called "memo" functions are another example, in which the function tracks the number
of times it is called. Therefore, exceptions to this rule are anticipated but should only be
allowed on a per-instance basis after careful analysis.

46 Chapter 6. Robust Programming Practice (RPP)

Guidelines for Safe and Secure Ada / SPARK

6.6.3 Applicable Vulnerability within ISO TR 24772-2

• 6.24 Side-effects and order of evaluation [SAM]

6.6.4 Applicable Common Weakness Enumeration

N/A

6.6.5 Noncompliant Code Example

Call_Count : Integer := 0;
function F return Boolean is

Result : Boolean;
begin

...
Call_Count := Call_Count + 1;
return Result;

end F;

6.6.6 Compliant Code Example

Remove the update to Call_Count, or change the function into a procedure with a param-
eter for Call_Count.

6.6.7 Notes

Violations are detected by SPARK as part of a rule disallowing side effects on expression
evaluation.

6.7 Functions Only Have Mode "in" (RPP07)

Level → Required
Category

Safety
✓

Cyber
✓

Goal
Maintainability

✓
Reliability

✓
Portability

✓
Performance
Security

6.7. Functions Only Have Mode "in" (RPP07) 47

Guidelines for Safe and Secure Ada / SPARK

Remediation → Low
Verification Method → GNATcheck rule: function_out_parameters

6.7.1 Reference

N/A

6.7.2 Description

Functions must have only mode in.
As of Ada 2012, functions are allowed to have the same modes as procedures. However,
this can lead to side effects and aliasing.
This rule disallows all modes except mode in for functions.

6.7.3 Applicable Vulnerability within ISO TR 24772-2

• 6.24 Side-effects and order of evaluation [SAM]

6.7.4 Applicable Common Weakness Enumeration

N/A

6.7.5 Noncompliant Code Example

function Noncompliant (Value : in out Integer) return Integer is
begin

if Value < Integer'last then
Value := Value + 1;

end if;
return Value;

end Noncompliant;

6.7.6 Compliant Code Example

function Compliant (Value : Integer) return Integer is
begin

return Value + 1;
end Compliant;

OR

procedure Compliant (Value : in out Integer) is
begin

if Value < Integer'last then
Value := Value + 1;

end if;
end Compliant;

48 Chapter 6. Robust Programming Practice (RPP)

Guidelines for Safe and Secure Ada / SPARK

6.7.7 Notes

Violations are detected by SPARK.

6.8 Limit Parameter Aliasing (RPP08)

Level → Required
Category

Safety
✓

Cyber
✓

Goal
Maintainability

✓
Reliability

✓
Portability

✓
Performance
Security

Remediation → High
Verification Method → Code inspection

6.8.1 Reference

Ada Reference Manual: 6.2 Formal Parameter Modes50

SPARK Reference Manual: Anti-Aliasing51

6.8.2 Description

In software, an alias is a name which refers to the same object as another name. In some
cases, it is an error in Ada to reference an object through a name while updating it through
another name in the same subprogram. Most of these cases cannot be detected by a com-
piler. Even when not an error, the presence of aliasing makes it more difficult to understand
the code for both humans and analysis tools, and thus it may lead to errors being introduced
during maintenance.
This rule is meant to detect problematic cases of aliasing that are introduced through the
actual parameters and between actual parameters and global variables in a subprogram
call. It is a simplified version of the SPARK rule for anti-aliasing defined in SPARK Reference
Manual, section 6.4.2: Anti-Aliasing52.
A formal parameter is said to be immutable when the subprogram cannot modify its value
or modify the value of an object by dereferencing a part of the parameter of access type
50 http://www.ada-auth.org/standards/12rm/html/RM-6-2.html
51 https://docs.adacore.com/spark2014-docs/html/lrm/subprograms.html#anti-aliasing
52 https://docs.adacore.com/spark2014-docs/html/lrm/subprograms.html#anti-aliasing

6.8. Limit Parameter Aliasing (RPP08) 49

http://www.ada-auth.org/standards/12rm/html/RM-6-2.html
https://docs.adacore.com/spark2014-docs/html/lrm/subprograms.html#anti-aliasing
https://docs.adacore.com/spark2014-docs/html/lrm/subprograms.html#anti-aliasing
https://docs.adacore.com/spark2014-docs/html/lrm/subprograms.html#anti-aliasing

Guidelines for Safe and Secure Ada / SPARK

(at any depth in the case of SPARK). In Ada and SPARK, this corresponds to either an anony-
mous access-to-constant parameter or a parameter of mode in and not of an access type.
Otherwise, the formal parameter is said to be mutable.
A procedure call shall not pass two actual parameters which potentially introduce aliasing
via parameter passing unless either:
• both of the corresponding formal parameters are immutable; or
• at least one of the corresponding formal parameters is immutable and is of a by-copy
type that is not an access type.

If an actual parameter in a procedure call and a global variable referenced by the called
procedure potentially introduce aliasing via parameter passing, then:
• the corresponding formal parameter shall be immutable; and
• if the global variable is written in the subprogram, then the corresponding formal pa-
rameter shall be of a by-copy type that is not an access type.

Where one of the rules above prohibits the occurrence of an object or any of its subcompo-
nents as an actual parameter, the following constructs are also prohibited in this context:
• A type conversion whose operand is a prohibited construct;
• A call to an instance of Unchecked_Conversion whose operand is a prohibited con-
struct;

• A qualified expression whose operand is a prohibited construct;
• A prohibited construct enclosed in parentheses.

6.8.3 Applicable Vulnerability within ISO TR 24772-2

• 6.32 Passing parameters and return values [CSJ]

6.8.4 Applicable Common Weakness Enumeration

N/A

6.8.5 Noncompliant Code Example

type R is record
Data : Integer := 0;

end record;

procedure Detect_Aliasing (Val_1 : in out R;
Val_2 : in R)

is
begin

null;
end Detect_Aliasing;

Obj : R;

begin
Detect_Aliasing (Obj, Obj);

50 Chapter 6. Robust Programming Practice (RPP)

Guidelines for Safe and Secure Ada / SPARK

6.8.6 Compliant Code Example

Do not pass Obj as the actual parameter to both formal parameters.

6.8.7 Notes

All violations are detected by SPARK. The GNAT compiler switch -gnateA[1] enables de-
tection of some cases, but not all.

6.9 Use Precondition and Postcondition Contracts
(RPP09)

Level → Advisory
Category

Safety
✓

Cyber
✓

Goal
Maintainability

✓
Reliability

✓
Portability

✓
Performance
Security

✓
Remediation → Low
Verification Method → Code inspection

6.9.1 Reference

Power of Ten rule 5: "The assertion density of the code should average to a minimum of
two assertions per function."

6.9. Use Precondition and Postcondition Contracts (RPP09) 51

Guidelines for Safe and Secure Ada / SPARK

6.9.2 Description

Subprograms should declare Pre and/or Post contracts. Developers should consider spec-
ifying the Global contract as well, when the default does not apply.
Subprogram contracts complete the Ada notion of a specification, enabling clients to know
what the subprogram does without having to know how it is implemented.
Preconditions define those logical (Boolean) conditions required for the body to be able to
provide the specified behavior. As such, they are obligations on the callers. These condi-
tions are checked at run-time in Ada, prior to each call, and verified statically in SPARK.
Postconditions define those logical (Boolean) conditions that will hold after the call returns
normally. As such, they express obligations on the implementer, i.e., the subprogram body.
The implementation must be such that the postcondition holds, either at run-time for Ada,
or statically in SPARK.
Not all subprograms will have both a precondition and a postcondition, some will have
neither.
The Global contract specifies interactions with those objects not local to the corresponding
subprogram body. As such, they help complete the specification because, otherwise, one
would need to examine the body of the subprogram itself and all those it calls, directly or
indirectly, to know whether any global objects were accessed.

6.9.3 Applicable Vulnerability within ISO TR 24772-2

• 6.42 Violations of the Liskov substitution principle or the contract model [BLP]

6.9.4 Applicable Common Weakness Enumeration

• CWE-754 - Improper Check for Unusual or Exceptional Conditions53

6.9.5 Noncompliant Code Example

type Stack is private;
procedure Push (This : in out Stack; Item : Element);

6.9.6 Compliant Code Example

type Stack is private;
procedure Push (This : in out Stack; Item : Element) with

Pre => not Full (This),
Post => not Empty (This)

and Top_Element (This) = Item
and Extent (This) = Extent (This)'Old + 1
and Unchanged (This'Old, Within => This),

Global => null;

53 https://cwe.mitre.org/data/definitions/754.html

52 Chapter 6. Robust Programming Practice (RPP)

https://cwe.mitre.org/data/definitions/754.html

Guidelines for Safe and Secure Ada / SPARK

6.9.7 Notes

This rule must be enforced by manual inspection.
Moreover, the program must be compiled with enabled assertions (GNAT -gnata switch) to
ensure that the contracts are executed, or a sound static analysis tool such as CodePeer or
SPARK toolset should be used to prove that the contracts are always true.

6.10 Do Not Re-Verify Preconditions in SubprogramBod-
ies (RPP10)

Level → Advisory
Category

Safety
✓

Cyber
✓

Goal
Maintainability

✓
Reliability

✓
Portability

✓
Performance
Security

Remediation → Low
Verification Method → Static analysis tools

6.10.1 Reference

N/A

6.10.2 Description

Do not re-verify preconditions in the corresponding subprogram bodies. It is a waste of
cycles and confuses the reader as well.

6.10. Do Not Re-Verify Preconditions in Subprogram Bodies (RPP10) 53

Guidelines for Safe and Secure Ada / SPARK

6.10.3 Applicable Vulnerability within ISO TR 24772-2

N/A

6.10.4 Applicable Common Weakness Enumeration

N/A

6.10.5 Noncompliant Code Example

type Stack is private;
procedure Push (This : in out Stack; Item : Element) with

Pre => not Full (This),
Post => ...

...
procedure Push (This : in out Stack; Item : Element) is
begin

if Full (This) then -- redundant check
raise Overflow;

end if;
This.Top := This.Top + 1;
This.Values (This.Top) := Item;

end Push;

6.10.6 Compliant Code Example

type Stack is private;
procedure Push (This : in out Stack; Item : Element) with

Pre => not Full (This),
Post => ...

...
procedure Push (This : in out Stack; Item : Element) is
begin

This.Top := This.Top + 1;
This.Values (This.Top) := Item;

end Push;

6.10.7 Notes

This rule can be enforced by CodePeer or SPARK, via detection of dead code.

6.11 Always Use the Result of Function Calls (RPP11)

Level → Advisory
Category

Safety
✓

Cyber
✓

54 Chapter 6. Robust Programming Practice (RPP)

Guidelines for Safe and Secure Ada / SPARK

Goal
Maintainability

✓
Reliability

✓
Portability

✓
Performance
Security

Remediation → Low
Verification Method → Compiler restrictions

6.11.1 Reference

MISRA C Rule 17.7: "The value returned by a function having non-void return type shall be
used," and
Directive 4.7: "If a function returns error information, that error information shall be tested."

6.11.2 Description

In Ada and SPARK, it is not possible to ignore the object returned by a function call. The
call must be treated as a value, otherwise the compiler will reject the call. For example,
the value must be assigned to a variable, or passed as the actual parameter to a formal
parameter of another call, and so on.
However, that does not mean that the value is actually used to compute some further
results. Although almost certainly a programming error, one could call a function, assign
the result to a variable (or constant), and then not use that variable further.
Note that functions will not have side-effects (due to RPP06) so it is only the returned value
that is of interest here.

6.11.3 Applicable Vulnerability within ISO TR 24772-2

• 6.47 Inter-language calling [DJS]

6.11.4 Applicable Common Weakness Enumeration

• CWE-252 - Unchecked Return Value54

• CWE-563 - Assignment to Variable without Use55

54 https://cwe.mitre.org/data/definitions/252.html
55 https://cwe.mitre.org/data/definitions/563.html

6.11. Always Use the Result of Function Calls (RPP11) 55

https://cwe.mitre.org/data/definitions/252.html
https://cwe.mitre.org/data/definitions/563.html

Guidelines for Safe and Secure Ada / SPARK

6.11.5 Noncompliant Code Example

N/A

6.11.6 Compliant Code Example

N/A

6.11.7 Notes

The GNAT compiler warning switch -gnatwu (or the more general -gnatwa warnings switch)
will cause the compiler to detect variables assigned but not read. CodePeer will detect these
unused variables as well. SPARK goes further by checking that all computations contribute
all the way to subprogram outputs.

6.12 No Recursion (RPP12)

Level → Advisory
Category

Safety
✓

Cyber
✓

Goal
Maintainability

✓
Reliability

✓
Portability

✓
Performance
Security

Remediation → Low
Verification Method → GNATcheck rule: Recursive_Subprograms

6.12.1 Reference

MISRA C Rule 17.2: "Functions shall not call themselves, either directly or indirectly."

56 Chapter 6. Robust Programming Practice (RPP)

Guidelines for Safe and Secure Ada / SPARK

6.12.2 Description

No subprogram shall be invoked, directly or indirectly, as part of its own execution.
In addition to making static analysis more complex, recursive calls make static stack usage
analysis extremely difficult, requiring, for example, manual supply of call limits.

6.12.3 Applicable Vulnerability within ISO TR 24772-2

• 6.35 Recursion [GDL]

6.12.4 Applicable Common Weakness Enumeration

• CWE-674 - Uncontrolled Recursion56

6.12.5 Noncompliant Code Example

function Noncompliant (N : Positive) return Positive is
begin

if N = 1 then
return 1;

else
return N * Noncompliant (N - 1); -- could overflow

end if;
end Noncompliant;

6.12.6 Compliant Code Example

function Compliant (N : Positive) return Positive is
Result : Positive := 1;

begin
for K in 2 .. N loop

Result := Result * K; -- could overflow
end loop;
return Result;

end Compliant;

6.12.7 Notes

The compiler will detect violations with the restriction No_Recursion in place. Note this is
a dynamic check.
The GNATcheck rule specified above is a static check, subject to the limitations described
in GNATcheck Reference Manual: Recursive Subprograms57.
56 https://cwe.mitre.org/data/definitions/674.html
57 https://docs.adacore.com/live/wave/lkql/html/gnatcheck_rm/gnatcheck_rm/predefined_rules.html#
recursive-subprograms

6.12. No Recursion (RPP12) 57

https://cwe.mitre.org/data/definitions/674.html
https://docs.adacore.com/live/wave/lkql/html/gnatcheck_rm/gnatcheck_rm/predefined_rules.html#recursive-subprograms

Guidelines for Safe and Secure Ada / SPARK

6.13 No Reuse of Standard Typemarks (RPP13)

Level → Advisory
Category

Safety
✓

Cyber
✓

Goal
Maintainability

✓
Reliability

✓
Portability

✓
Performance
Security

Remediation → Low
Verification Method → GNATcheck rule: overrides_standard_name

6.13.1 Reference

N/A

6.13.2 Description

Do not reuse the names of standard Ada typemarks (e.g. type Integer is range -1_000
.. 1_000;)
When a developer uses an identifier that has the same name as a standard typemark, such
as Integer, a subsequent maintainer might be unaware that this identifier does not actu-
ally refer to Standard.Integer and might unintentionally use the locally-scoped Integer
rather than the original Standard.Integer. The locally-scoped Integer can have different
attributes (and may not even be of the same base type).

6.13.3 Applicable Vulnerability within ISO TR 24772-2

N/A

58 Chapter 6. Robust Programming Practice (RPP)

Guidelines for Safe and Secure Ada / SPARK

6.13.4 Applicable Common Weakness Enumeration

• CWE-843 - Access of Resource Using Incompatible Type ('Type Confusion')58

6.13.5 Noncompliant Code Example

type Boolean is range 0 .. 1 with Size => 1;
type Character is ('A', 'E', 'I', 'O', 'U');

6.13.6 Compliant Code Example

type Boolean_T is range 0 .. 1 with Size => 1;
type Character_T is ('A', 'E', 'I', 'O', 'U');

6.13.7 Notes

N/A

6.14 Use Symbolic Constants for Literal Values (RPP14)

Level → Advisory
Category

Safety
✓

Cyber
✓

Goal
Maintainability

✓
Reliability

✓
Portability

✓
Performance
Security

Remediation → Low
Verification Method → GNATcheck rule: Numeric_Literals
58 https://cwe.mitre.org/data/definitions/843.html

6.14. Use Symbolic Constants for Literal Values (RPP14) 59

https://cwe.mitre.org/data/definitions/843.html

Guidelines for Safe and Secure Ada / SPARK

6.14.1 Reference

N/A

6.14.2 Description

Extensive use of literals in a program can lead to two problems. First, the meaning of the
literal is often obscured or unclear from the context. Second, changing a frequently used
literal requires searching the entire program source for that literal and distinguishing the
uses that must be modified from those that should remain unmodified.
Avoid these problems by declaring objects with meaningfully named constants, setting their
values to the desired literals, and referencing the constants instead of the literals through-
out the program. This approach clearly indicates the meaning or intended use of each
literal. Furthermore, should the constant require modification, the change is limited to the
declaration; searching the code is unnecessary.
Some literals can be replaced with attribute values. For example, when iterating over an
array, it is better to use Array_Object'First .. Array_Object'Last than using 1 ..
Array_Object'Length.

6.14.3 Applicable Vulnerability within ISO TR 24772-2

N/A

6.14.4 Applicable Common Weakness Enumeration

• CWE-547 - Use of Hard-coded, Security-relevant Constants59

• CWE-1106 - Insufficient Use of Symbolic Constants60

6.14.5 Noncompliant Code Example

type Array_T is array (0 .. 31) of Boolean;
function Any_Set (X : Array_T) return Boolean is

(for some Flag in 0 .. 31 => X (Flag));

6.14.6 Compliant Code Example

Number_Of_Bits : constant := 32;
type Array_T is array (0 .. Number_Of_Bits - 1) of Boolean;
function Any_Set (X : Array_T) return Boolean is

(for some Flag in X'Range => X (Flag));

59 https://cwe.mitre.org/data/definitions/547.html
60 https://cwe.mitre.org/data/definitions/1106.html

60 Chapter 6. Robust Programming Practice (RPP)

https://cwe.mitre.org/data/definitions/547.html
https://cwe.mitre.org/data/definitions/1106.html

Guidelines for Safe and Secure Ada / SPARK

6.14.7 Notes

N/A

6.14. Use Symbolic Constants for Literal Values (RPP14) 61

Guidelines for Safe and Secure Ada / SPARK

62 Chapter 6. Robust Programming Practice (RPP)

CHAPTER

SEVEN

EXCEPTION USAGE (EXU)

Goal
Maintainability

✓
Reliability

✓
Portability

✓
Performance

✓
Security

✓
Description

Have a plan for managing the use of Ada exceptions at the application level.
Rules

EXU01, EXU02, EXU03, EXU04
Exceptions in modern languages present the software architect with a dilemma. On one
hand, exceptions can increase integrity by allowing components to signal specific errors
in a manner that cannot be ignored, and, in general, allow residual errors to be caught.
(Although there should be no unexpected errors in high integrity code, there may be some
such errors due, for example, to unforeseeable events such as radiation-induced single-
event upsets.) On the other hand, unmanaged use of exceptions increases verification
expense and difficulty, especially flow analysis, perhaps to an untenable degree. In that
case overall integrity is reduced or unwarranted.
In addition, programming languages may define some system-level errors in terms of
language-defined exceptions. Such exceptions may be unavoidable, at least at the system
level. For example, in Ada, stack overflow is signalled with the language-defined Stor-
age_Error exception. Other system events, such as bus error, may also be mapped to
language-defined or vendor-defined exceptions.
Complicating the issue further is the fact that, if exceptions are completely disallowed,
there will be no exception handling code in the underlying run-time library. The effects are
unpredictable if any exception actually does occur.
Therefore, for the application software the system software architect must decide whether
to allow exceptions at all, and if they are to be used, decide the degree and manner of their
usage. At the system level, the architect must identify the exceptions that are possible and
how they will be addressed.

63

Guidelines for Safe and Secure Ada / SPARK

7.1 Do Not Raise Language-Defined Exceptions (EXU01)

Level → Required
Category

Safety
✓

Cyber
✓

Goal
Maintainability

✓
Reliability

✓
Portability

✓
Performance
Security

Remediation → Low
Verification Method → GNATcheck rule: Raising_Predefined_Exceptions

7.1.1 Reference

[SEI-Java] ERR07-J

7.1.2 Description

In no case should the application explicitly raise a language-defined exception.
The Ada language-defined exceptions are raised implicitly in specific circumstances defined
by the language standard. Explicitly raising these exceptions would be confusing to appli-
cation developers. The potential for confusion increases as the exception is propagated up
the dynamic call chain, away from the point of the raise statement, because this increases
the number of paths and thus corresponding language-defined checks that could have been
the cause.

7.1.3 Applicable Vulnerability within ISO TR 24772-2

N/A

64 Chapter 7. Exception Usage (EXU)

Guidelines for Safe and Secure Ada / SPARK

7.1.4 Applicable Common Weakness Enumeration

• CWE-397 - Declaration of Throws for Generic Exception61

7.1.5 Noncompliant Code Example

procedure Noncompliant (X : in out Integer) is
begin

if X < Integer'Last / 2
then

X := X * 2;
else

raise Constraint_Error;
end if;

end Noncompliant;

7.1.6 Compliant Code Example

procedure Compliant (X : in out Integer) is
begin

if X < Integer'Last / 2
then

X := X * 2;
else

raise Math_Overflow;
end if;

end Compliant;

7.1.7 Notes

N/A

7.2 No Unhandled Application-Defined Exceptions
(EXU02)

Level → Required
Category

Safety
✓

Cyber
✓

Goal
Maintainability

✓
Reliability

✓
61 https://cwe.mitre.org/data/definitions/397.html

7.2. No Unhandled Application-Defined Exceptions (EXU02) 65

https://cwe.mitre.org/data/definitions/397.html

Guidelines for Safe and Secure Ada / SPARK

Portability
✓

Performance
Security

Remediation → Low
Verification Method → GNATcheck rule: Unhandled_Exceptions

7.2.1 Reference

N/A

7.2.2 Description

All application-defined exceptions must have at least one corresponding handler that is
applicable. Otherwise, if an exception is raised, undesirable behavior is possible. The term
applicable means that there is no dynamic call chain that can reach the active exception
which does not also include a handler that will be invoked for that exception, somewhere
in that chain.
When an unhandled exception occurs in the sequence of statements of an application task
and propagates to task's body, the task terminates abnormally. No notification of some
sort is required or defined by the language, although some vendors' implementations may
print out a log message or provide some other non-standard response. (Note that such a
notification implies an external persistent environment, such as an operating system, that
may not be present in all platforms.) The task failure does not affect any other tasks unless
those other tasks attempt to communicate with it. In short, failure is silent.
Although the language-defined package Ada.Task_Termination can be used to provide
a response using standard facilities, not all run-time libraries provide that package. For
example, under the Ravenscar profile, application tasks are not intended to terminate, nei-
ther normally nor abnormally, and the language does not define what happens if they do.
A run-time library for a memory-constrained target, especially a bare-metal target without
an operating system, might not include any support for task termination when the tasking
model is Ravenscar. The effects of task termination in that case are not defined by the
language.
When an unhandled exception occurrence reaches the main subprogram and is not han-
dled there, the exception occurrence is propagated to the environment task, which then
completes abnormally. Even if the main subprogram does handle the exception, the envi-
ronment task still completes (normally in that case).
When the environment task completes (normally or abnormally) it waits for the completion
of dependent application tasks, if any. Those dependent tasks continue executing normally,
i.e., they do not complete as a result of the environment task completion. Alternatively,
however, instead of waiting for them, the implementation has permission to abort the de-
pendent application tasks, per Ada Reference Manual: 10.2 (30) Program Execution62 The
resulting application-specific effect is undefined.
Finally, whether the environment task waited for the dependent tasks or aborted them,
the semantics of further execution beyond that point are undefined. There is no concept
of a calling environment beyond the environment task (Ada Reference Manual: 10.2 (30)
Program Execution63). In some systems there is no calling environment, such as bare-metal
platforms with only an Ada run-time library and no operating system.
62 http://www.ada-auth.org/standards/12rm/html/RM-10-2.html
63 http://www.ada-auth.org/standards/12rm/html/RM-10-2.html

66 Chapter 7. Exception Usage (EXU)

http://www.ada-auth.org/standards/12rm/html/RM-10-2.html
http://www.ada-auth.org/standards/12rm/html/RM-10-2.html
http://www.ada-auth.org/standards/12rm/html/RM-10-2.html

Guidelines for Safe and Secure Ada / SPARK

7.2.3 Applicable Vulnerability within ISO TR 24772-2

• 6.36 Ignored error status and unhandled exceptions [OYB]

7.2.4 Applicable Common Weakness Enumeration

• CWE-248 - Uncaught Exception64

7.2.5 Noncompliant Code Example

procedure Main is
begin

if Argument_Count = 0 then
raise Cli_Exception;

else
begin

Start_Application (Argument (1));
exception

when Application_Exception =>
Put_Line ("Application failed");

end;
end if;

end Main;

7.2.6 Compliant Code Example

procedure Main is
begin

if Argument_Count = 0 then
raise Cli_Exception;

else
begin

Start_Application (Argument (1));
exception

when Application_Exception =>
Put_Line ("Application failed");

end;
end if;

exception
when Cli_Exception =>

Put_Line ("Failure");
end Main;

64 https://cwe.mitre.org/data/definitions/248.html

7.2. No Unhandled Application-Defined Exceptions (EXU02) 67

https://cwe.mitre.org/data/definitions/248.html

Guidelines for Safe and Secure Ada / SPARK

7.2.7 Notes

SPARK can prove that no exception will be raised (or fail to prove it and indicate the failure).

7.3 No Exception Propagation Beyond Name Visibility
(EXU03)

Level → Required
Category

Safety
✓

Cyber
✓

Goal
Maintainability

✓
Reliability

✓
Portability

✓
Performance
Security

Remediation → Low
Verification Method → GNATcheck rule: Non_Visible_Exceptions

7.3.1 Reference

RPP05

7.3.2 Description

An active exception can be propagated dynamically past the point where the name of the
exception is visible (the scope of the declaration). The exception can only be handled via
others past that point. That situation prevents handling the exception specifically, and
violates RPP05.

7.3.3 Applicable Vulnerability within ISO TR 24772-2

N/A

68 Chapter 7. Exception Usage (EXU)

Guidelines for Safe and Secure Ada / SPARK

7.3.4 Applicable Common Weakness Enumeration

• CWE-248 - Uncaught Exception65

7.3.5 Noncompliant Code Example

procedure Noncompliant (Param : in out Integer) is
Noncompliant_Exception : exception;

begin
Param := Param * Param;

exception
when others =>

raise Noncompliant_Exception;
end Noncompliant;

As a result the exception name cannot be referenced outside the body:

procedure Bad_Call (Param : in out Integer) is
begin

Noncompliant (Param);
exception

when Noncompliant_Exception => -- compile error
null;

end Bad_Call;

7.3.6 Compliant Code Example

Compliant_Exception : exception;
procedure Compliant (Param : in out Integer) is
begin

Param := Param * Param;
exception

when others =>
raise Compliant_Exception;

end Compliant;

procedure Good_Call (Param : in out Integer) is
begin

Compliant (Param);
exception

when Compliant_Exception =>
null;

end Good_Call;

65 https://cwe.mitre.org/data/definitions/248.html

7.3. No Exception Propagation Beyond Name Visibility (EXU03) 69

https://cwe.mitre.org/data/definitions/248.html

Guidelines for Safe and Secure Ada / SPARK

7.3.7 Notes

N/A

7.4 Prove Absence of Run-time Exceptions (EXU04)

Level → Required
Category

Safety
✓

Cyber
✓

Goal
Maintainability

✓
Reliability

✓
Portability

✓
Performance
Security

Remediation → Low
Verification Method → Compiler restrictions

7.4.1 Reference

MISRA C Rule 1.3: "There shall be no occurrence of undefined or critical unspecified be-
haviour."

7.4.2 Description

In many high-integrity systems the possible responses to an exception are limited or nonex-
istent. In these cases the only approach is to prove exceptions cannot occur in the first
place. Additionally, the cost of proving exceptions cannot happen may be less than the
cost of analyzing code in which they are allowed to be raised.
The restriction No_Exceptions can be used with pragma Restrictions to enforce this ap-
proach. Specifically, the restriction ensures that raise statements and exception handlers
do not appear in the source code and that language-defined checks are not emitted by the
compiler. However, a run-time check performed automatically by the hardware is permit-
ted because it typically cannot be prevented. An example of such a check would be traps
on invalid addresses. If a hardware check fails, or if an omitted language-defined check
would have failed, execution is unpredictable. As a result, enforcement with the restriction
is not ideal. However, proof of the absence of run-time errors is possible using the SPARK
subset of Ada.

70 Chapter 7. Exception Usage (EXU)

Guidelines for Safe and Secure Ada / SPARK

7.4.3 Applicable Vulnerability within ISO TR 24772-2

N/A

7.4.4 Applicable Common Weakness Enumeration

• CWE-248 - Uncaught Exception66

7.4.5 Noncompliant Code Example

N/A

7.4.6 Compliant Code Example

N/A

7.4.7 Notes

This restriction is detected by SPARK, in which any statements explicitly raising an exception
must be proven unreachable (or proof fails and the failure is indicated), and any possibility
of run-time exception should be proved not to happen.

66 https://cwe.mitre.org/data/definitions/248.html

7.4. Prove Absence of Run-time Exceptions (EXU04) 71

https://cwe.mitre.org/data/definitions/248.html

Guidelines for Safe and Secure Ada / SPARK

72 Chapter 7. Exception Usage (EXU)

CHAPTER

EIGHT

OBJECT-ORIENTED PROGRAMMING (OOP)

Goal
Maintainability

✓
Reliability

✓
Portability
Performance
Security

✓
Description

Have a plan for selecting the OOP facilities of the language to use.
Rules

OOP01, OOP02, OOP03, OOP04, OOP05, OOP06, OOP07
There are many issues to consider when planning the use of Object Oriented features in a
high-integrity application. Choices should be made based on the desired expressive power
of the OO features and the required level of certification or safety case.
For example, the use of inheritance can provide abstraction and separation of concerns.
However, the extensive use of inheritance, particularly in deep hierarchies, can lead to
fragile code bases.
Similarly, when new types of entities are added, dynamic dispatching provides separation
of the code that must change from the code that manipulates those types and need not
be changed to handle new types. However, analysis of dynamic dispatching must con-
sider every candidate object type and analyze the associated subprogram for appropriate
behavior.
Therefore, the system architect has available a range of possibilities for the use of OOP
constructs, with tool enforcement available for the selections. Note that full use of OOP,
including dynamic dispatching, may not be unreasonable.
The following rules assume use of tagged types, a requirement for full OOP in Ada.

73

Guidelines for Safe and Secure Ada / SPARK

8.1 No Class-wide Constructs Policy (OOP01)

Level → Advisory
Category

Safety
✓

Cyber
✓

Goal
Maintainability

✓
Reliability

✓
Portability
Performance
Security

✓
Remediation → N/A
Verification Method → Compiler restrictions
Mutually Exclusive → OOP02

8.1.1 Reference

N/A

8.1.2 Description

In this approach, tagged types are allowed and type extension (inheritance) is allowed, but
there are no class-wide constructs.
This restriction ensures there are no class-wide objects or formal parameters, nor access
types designating class-wide types.
In this approach there are no possible dynamic dispatching calls because such calls can
only occur when a class-wide value is passed as the parameter to a primitive operation of
a tagged type.

8.1.3 Applicable Vulnerability within ISO TR 24772-2

• 6.43 Redispatching [PPH]

74 Chapter 8. Object-Oriented Programming (OOP)

Guidelines for Safe and Secure Ada / SPARK

8.1.4 Applicable Common Weakness Enumeration

N/A

8.1.5 Noncompliant Code Example

X : Object'Class := Some_Object;

8.1.6 Compliant Code Example

X : Object := Some_Object;

8.1.7 Notes

The compiler will detect violations with the standard Ada restriction No_Dispatch applied.

8.2 Static Dispatching Only Policy (OOP02)

Level → Advisory
Category

Safety
✓

Cyber
✓

Goal
Maintainability

✓
Reliability

✓
Portability
Performance
Security

✓
Remediation → N/A
Verification Method → Compiler restrictions
Mutually Exclusive → OOP01

8.2. Static Dispatching Only Policy (OOP02) 75

Guidelines for Safe and Secure Ada / SPARK

8.2.1 Reference

N/A

8.2.2 Description

In this approach, class-wide constructs are allowed, as well as tagged types and type ex-
tension (inheritance), but dynamic dispatching remains disallowed (i.e., as in OOP01).
This rule ensures there are no class-wide values passed as the parameter to a primitive
operation of a tagged type, hence there are no dynamically dispatched calls.
Note that this rule should not be applied without due consideration.

8.2.3 Applicable Vulnerability within ISO TR 24772-2

• 6.43 Redispatching [PPH]

8.2.4 Applicable Common Weakness Enumeration

N/A

8.2.5 Noncompliant Code Example

Some_Primitive (Object'Class (X));

8.2.6 Compliant Code Example

Some_Primitive (X);

8.2.7 Notes

N/A

8.3 Limit Inheritance Hierarchy Depth (OOP03)

Level → Advisory
Category

Safety
✓

Cyber
✓

Goal
Maintainability

✓

76 Chapter 8. Object-Oriented Programming (OOP)

Guidelines for Safe and Secure Ada / SPARK

Reliability
✓

Portability
Performance
Security

✓
Remediation → High
Verification Method → GNATcheck rule: Deep_Inheritance_Hierarchies:2

8.3.1 Reference

[AdaOOP2016] section 5.1

8.3.2 Description

A class inheritance hierarchy consists of a set of types related by inheritance. Each class,
other than the root class, is a subclass of other classes, and each, except for "leaf" nodes,
is a base class for those that are derived from it.
Improperly designed inheritance hierarchies complicate system maintenance and increase
the effort in safety certification, in any programming language.
A common characteristic of problematic hierarchies is "excessive" depth, in which a given
class is a subclass of many other classes. Depth can be a problem because a change to
a class likely requires inspection, modification, recompilation, and retesting/reverification
of all classes below it in the hierarchy. The extent of that effect increases as we approach
the root class. This rippling effect is known as the fragile base class problem. Clearly, the
greater the depth the more subclasses there are to be potentially affected. In addition, note
that a change to one class may cause a cascade of other secondary changes to subclasses,
so the effect is often not limited to a single change made to all the subclasses in question.
Deep inheritance hierarchies also contribute to complexity, rather than lessening it, by re-
quiring the reader to understand multiple superclasses in order to understand the behavior
of a given subclass.

8.3.3 Applicable Vulnerability within ISO TR 24772-2

• 6.41 Inheritance [RIP]

8.3.4 Applicable Common Weakness Enumeration

• CWE-1074 - Class with Excessively Deep Inheritance67

• CWE-1086 - Class with Excessive Number of Child Classes68
67 https://cwe.mitre.org/data/definitions/1074.html
68 https://cwe.mitre.org/data/definitions/1086.html

8.3. Limit Inheritance Hierarchy Depth (OOP03) 77

https://cwe.mitre.org/data/definitions/1074.html
https://cwe.mitre.org/data/definitions/1086.html

Guidelines for Safe and Secure Ada / SPARK

8.3.5 Noncompliant Code Example

The threshold for "too deep" is inexact, but beyond around 4 or 5 levels the complexity
accelerates rapidly.

type Shape_T is tagged private;
procedure Set_Name (Shape : Shape_T; Name : String);
function Get_Name (Shape : Shape_T) return String;

type Quadrilateral_T is new Shape_T with private;
type Trapezoid_T is new Quadrilateral_T with private;
type Parallelogram_T is new Trapezoid_T with private;
type Rectangle_T is new Parallelogram_T with private;
type Square_T is new Rectangle_T with private;

8.3.6 Compliant Code Example

type Shape_T is tagged private;
procedure Set_Name (Shape : Shape_T; Name : String);
function Get_Name (Shape : Shape_T) return String;

type Quadrilateral_T is new Shape_T with private;
type Rectangle_T is new Quadrilateral_T with private;
type Square_T is new Rectangle_T with private;

8.3.7 Notes

N/A

8.4 Limit Statically-Dispatched Calls to Primitive Opera-
tions (OOP04)

Level → Advisory
Category

Safety
✓

Cyber
✓

Goal
Maintainability

✓
Reliability

✓
Portability

✓
Performance
Security

78 Chapter 8. Object-Oriented Programming (OOP)

Guidelines for Safe and Secure Ada / SPARK

Remediation → Medium (easy fix, but a difficult to detect bug)
Verification Method → GNATcheck rule: Direct_Calls_To_Primitives

8.4.1 Reference

N/A

8.4.2 Description

This rule applies only to tagged types, when visibly tagged at the point of a call from one
primitive to another of that same type.
By default, subprogram calls are statically dispatched. Dynamic dispatching only occurs
when a class-wide value is passed to a primitive operation of a specific type. Forcing an
otherwise optional dynamic dispatching call in this case is known as redispatching.
When one primitive operation of a given tagged type invokes another distinct primitive
operation of that same type, use redispatching so that an overriding version of that other
primitive will be invoked if it exists. Otherwise an existing overridden version would not be
invoked, which is very likely an error.
This rule does not apply to the common case in which an overriding of a primitive operation
calls the "parent" type's version of the overridden operation. Such calls occur in the over-
ridden body when the new version is not replacing, but rather, is augmenting the parent
type's version. In this case the new version must do whatever the parent version did, and
can then add functionality specific to the new type.
By default, this rule applies to another common case in which static calls from one primitive
operation to another make sense. Specifically, constructors are often implemented in Ada
as functions that create a new value of the tagged type. As constructors, these functions
are type-specific. They must call the primitive operations of the type being created, not
operations that may be overridden for some type later derived from it. (Note that there is
a GNATcheck rule parameter to not flag this case.)
Typically constructor functions only have the tagged type as the result type, not as the type
for formal parameters, if any, because actual parameters of the tagged type would them-
selves likely require construction. This specific usage is the case ignored by the GNATcheck
rule parameter.
Note that constructors implemented as procedures also call primitive operations of the
specific type, for the same reasons as constructor functions. This usage is allowed by this
rule and does not require the GNATcheck parameter. (The difference between function and
procedure constructors is that these procedures will have a formal parameter of the tagged
type, of mode out.)

8.4.3 Applicable Vulnerability within ISO TR 24772-2

• 6.42 Violations of the Liskov substitution principle of the contract model [BLP]
• 6.43 Redispatching [PPH]
• 6.44 Polymorphic variables [BKK]

8.4. Limit Statically-Dispatched Calls to Primitive Operations (OOP04) 79

Guidelines for Safe and Secure Ada / SPARK

8.4.4 Applicable Common Weakness Enumeration

N/A

8.4.5 Noncompliant Code Example

Class constructs

package Root is
type Root_T is tagged null record;
procedure Noncompliant (X : in out Root_T) is null;
procedure Compliant (X : in out Root_T) is null;
procedure Other_Prim (X : in out Root_T) is null;

end Root;

package Child is
use Root;
type Child_T is new Root_T with null record;
procedure Noncompliant (X : in out Child_T);
procedure Compliant (X : in out Child_T);
procedure Other_Prim (X : in out Child_T);

end Child;

procedure Not_A_Primitive (X : in out Child.Child_T) is null;

Noncompliant Code

procedure Noncompliant (X : in out Child_T) is
begin

Other_Prim (Root_T (X));
Other_Prim (X);

end Noncompliant;

8.4.6 Compliant Code Example

procedure Compliant (X : in out Child_T) is
begin

Compliant (Root_T (X)); -- constructor style is OK
Not_A_Primitive (X);

end Compliant;

8.4.7 Notes

N/A

80 Chapter 8. Object-Oriented Programming (OOP)

Guidelines for Safe and Secure Ada / SPARK

8.5 Use Explicit Overriding Annotations (OOP05)

Level → Required
Category

Safety
✓

Cyber
✓

Goal
Maintainability

✓
Reliability

✓
Portability

✓
Performance
Security

Remediation → Low
Verification Method → GNATcheck rule: Style_Checks:O

8.5.1 Reference

[AdaOOP2016] section 4.3

8.5.2 Description

The declaration of a primitive operation that overrides an inherited operation must include
an explicit overriding annotation.
The semantics of inheritance in mainstream object-oriented languages may result in two
kinds of programming errors: 1) intending, but failing, to override an inherited subprogram,
and 2) intending not to override an inherited subprogram, but doing so anyway. Because
an overridden subprogram may perform subclass-specific safety or security checks, the
invocation of the parent subprogram on a subclass instance can introduce a vulnerability.
The first issue (intending but failing to override) typically occurs when the subprogram
name is misspelled. In this case a new or overloaded subprogram is actually declared.
The second issue (unintended overriding) can arise when a new subprogram is added to a
parent type in an existing inheritance hierarchy. The new subprogram happens to cause
one or more inherited subprograms below it to override the new superclass version. This
mistake typically happens during program maintenance.
In Ada, much like other modern languages, one can annotate a subprogram declaration
(and body) with an indication that the subprogram is an overriding of an inherited version.
This is done with the overriding reserved word preceding the subprogram specification.
Similarly, in Ada one can explicitly indicate that a subprogram is not an overriding. To do
so, the programmer includes the reserved words not overriding immediately prior to the
subprogram specification.
Of course, incorrect marking errors are flagged by the compiler. If a subprogram is explic-
itly marked as overriding but is not actually overriding, the compiler will reject the code.

8.5. Use Explicit Overriding Annotations (OOP05) 81

Guidelines for Safe and Secure Ada / SPARK

Likewise, if a primitive subprogram is explicitly marked as not overriding, but actually is
overriding, the compiler will reject the code.
However, most subprograms are not overriding so it would be a heavy burden on the pro-
grammer to make them explicitly indicate that fact. That's not to mention the relatively
heavy syntax required.
In addition, both annotations are optional for the sake of compatibility with prior versions
of the language. Therefore, a subprogram without either annotation might or might not be
overriding. A legal program could contain some explicitly annotated subprograms and some
that are not annotated at all. But because the compiler will reject explicit annotations that
are incorrect, all we require is that one of the two cases be explicitly indicated for all such
subprograms. Any unannotated subprograms not flagged as errors are then necessarily
not that case, they must be the other one.
Since overriding is less common and involves slightly less syntax to annotate, the guideline
requires explicit annotations only for overriding subprograms. It follows that any subpro-
grams not flagged as errors by the compiler are not overriding, so they need not be marked
explicitly as such.
This guideline is implemented by compiler switches, or alternatively, by a GNATcheck rule
(specified below the table). With this guideline applied and enforced, the two inheritance
errors described in the introduction cannot happen.
Note that the compiler switches will also require the explicit overriding indicator when over-
riding a language-defined operator. The switches also apply to inherited primitive subpro-
grams for non-tagged types.

8.5.3 Applicable Vulnerability within ISO TR 24772-2

• 6.34 Subprogram signature mismatch [OTR]
• 6.41 Inheritance [RIP]

8.5.4 Applicable Common Weakness Enumeration

• CWE-685 - Function Call With Incorrect Number of Arguments69

8.5.5 Noncompliant Code Example

type Root_T is tagged null record;
procedure Primitive (X : in out Root_T) is null;

type Noncompliant_Child_T is new Root_T with null record;
procedure Primitive (X : in out Noncompliant_Child_T) is null;

69 https://cwe.mitre.org/data/definitions/685.html

82 Chapter 8. Object-Oriented Programming (OOP)

https://cwe.mitre.org/data/definitions/685.html

Guidelines for Safe and Secure Ada / SPARK

8.5.6 Compliant Code Example

type Compliant_Child_T is new Root_T with null record;
overriding procedure Primitive (X : in out Compliant_Child_T) is null;

8.5.7 Notes

This rule requires the GNAT compiler switches -gnatyO and -gnatwe in order for the com-
piler to flag missing overriding annotations as errors. The first causes the compiler to gen-
erate the warnings, and the second causes those warnings to be treated as errors.

8.6 Use Class-wide Pre/Post Contracts (OOP06)

Level → Required
Category

Safety
✓

Cyber
✓

Goal
Maintainability

✓
Reliability

✓
Portability
Performance
Security

✓
Remediation → Low
Verification Method → GNATcheck rule: Specific_Pre_Post

8.6.1 Reference

[AdaOOP2016] section 6.1.4
SPARK User's Guide, section 7.5.270
70 https://docs.adacore.com/live/wave/spark2014/html/spark2014_ug/en/source/how_to_write_object_oriented_
contracts.html#writing-contracts-on-dispatching-subprograms

8.6. Use Class-wide Pre/Post Contracts (OOP06) 83

https://docs.adacore.com/live/wave/spark2014/html/spark2014_ug/en/source/how_to_write_object_oriented_contracts.html#writing-contracts-on-dispatching-subprograms

Guidelines for Safe and Secure Ada / SPARK

8.6.2 Description

For primitive operations of tagged types, use only class-wide pre/post contracts, if any.
The class-wide form of precondition and postcondition expresses conditions that are in-
tended to apply to any version of the subprogram. Therefore, when a subprogram is de-
rived as part of inheritance, only the class-wide form of those contracts is inherited from
the parent subprogram, if any are defined. As a result, it only makes sense to use the
class-wide form in this situation.
(The same semantics and recommendation applies to type invariants.)
Note: this approach will be required for OOP07 (Ensure Local Type Consistency).

8.6.3 Applicable Vulnerability within ISO TR 24772-2

• 6.42 Violations of the Liskov substitution principle or the contract model [BLP]

8.6.4 Applicable Common Weakness Enumeration

N/A

8.6.5 Noncompliant Code Example

type Root_T is tagged null record;
procedure Set_Name (X : Root_T;

Name : String)
with Pre => Name'length > 0;

function Get_Name (X : Root_T) return String
with Post => Get_Name'result'length > 0;

8.6.6 Compliant Code Example

type Root_T is tagged null record;
procedure Set_Name (X : Root_T;

Name : String)
with Pre'class => Name'length > 0;

function Get_Name (X : Root_T) return String
with Post'class => Get_Name'result'length > 0;

8.6.7 Notes

N/A

84 Chapter 8. Object-Oriented Programming (OOP)

Guidelines for Safe and Secure Ada / SPARK

8.7 Ensure Local Type Consistency (OOP07)

Level → Required
Category

Safety
✓

Cyber
✓

Goal
Maintainability

✓
Reliability

✓
Portability
Performance
Security

✓
Remediation → N/A
Verification Method → Software test

8.7.1 Reference

[AdaOOP2016] See section 4.2.
GNAT User's Guide, section 5.10.1171

8.7.2 Description

Either:
• Formally verify local type consistency, or
• Ensure that each tagged type passes all the tests of all the parent types which it can
replace.

Rationale:
One of the fundamental benefits of OOP is the ability to manipulate objects in a class in-
heritance hierarchy without "knowing" at compile-time the specific classes of the objects
beingmanipulated. Bymanipulatewemean invoking the primitive operations, themethods
defined by the classes.
We will use the words class and type interchangeably, because classes are composed in Ada
and SPARK using a combination of building blocks, especially type declarations. However,
we will use the term subclass rather than subtype because the latter has a specific meaning
in Ada and SPARK that is unrelated to OOP.
The objects whose operations are being invoked can be of types anywhere in the inheritance
tree, from the root down to the bottom. The location, i.e., the specific type, is transparent to
the manipulating code. This type transparency is possible because the invoked operations
are dynamically dispatched at run-time, rather than statically dispatched at compile-time.
71 https://docs.adacore.com/gnat_ugn-docs/html/gnat_ugn/gnat_ugn/gnat_utility_programs.html

8.7. Ensure Local Type Consistency (OOP07) 85

https://docs.adacore.com/gnat_ugn-docs/html/gnat_ugn/gnat_ugn/gnat_utility_programs.html

Guidelines for Safe and Secure Ada / SPARK

Typically, the code manipulating the objects does so in terms of superclasses closer to the
root of the inheritance tree. Doing so increases generality because it increases the number
of potential subclasses that can be manipulated. The actual superclass chosen will depend
on the operations required by the manipulation. In Ada and SPARK, subclasses can add
operations but can never remove them, so more operations are found as we move down
from the root. That is the nature of specialization. Note that the guarantee of an invoked
operations' existence is essential for languages used in this domain.
However, for this transparent manipulation to be functionally correct — to accomplish what
the caller intends — the primitive operations of subclasses must be functionally indistin-
guishable from those of the superclasses. That doesn't mean the subclasses cannot make
changes. Indeed, the entire point of subclasses is to make changes. In particular, functional
changes can be either introduction of new operations, or overridings of inherited operations.
It is these overridings that must be functionally transparent to the manipulating code. (Of
course, for an inherited operation that is not overridden, the functionality is inherited as-is,
and is thus transparent trivially.)
The concept of functional transparency was introduced, albeit with different terminology,
by Liskov and Wing in 1994 [LiskovWing1994] and is, therefore, known as the Liskov Substi-
tution Principle, or LSP. The substitution in LSP means that a subclass must be substitutable
for its superclass, i.e., a subclass instance should be usable whenever a superclass instance
is required.
Unfortunately, requirements-based testing will not detect violations of LSP because unit-
level requirements do not concern themselves with superclass substitutability.
However, the OO supplement of DO-178C [DO178C] offers solutions, two of which are in
fact the options recommended by this guideline.
Specifically, the supplement suggests adding a specific verification activity it defines as
Local Type Consistency Verification. This activity ensures LSP is respected and, in so doing,
addresses the vulnerability.
Verification can be accomplished statically with formal methods in SPARK, or dynamically
via a modified form of testing.
For the static approach, type consistency is verified by examining the properties of the over-
riding operation's preconditions and postconditions. These are the properties required by
Design by Contract, as codified by Bertrand Meyer [Meyer1997]. Specifically, an overridden
primitive may only replace the precondition with one weaker than that of the parent ver-
sion, and may only replace the postcondition with one stronger. In essence, relative to the
parent version, an overridden operation can only require the same or less, and provide the
same or more. Satisfying that requirement is sufficient to ensure functional transparency
because the manipulating code only "knows" the contracts of the class it manipulates, i.e.,
the view presented by the type, which may very well be a superclass of the one actually
invoked.
In Ada and SPARK, the class-wide form of preconditions and postconditions are inherited
by overridden primitive operations of tagged types. The inherited precondition and that
of the overriding (if any) are combined into a conjunction. All must hold, otherwise the
precondition fails. Likewise, the inherited postcondition is combined with the overriding
postcondition into a disjunction. At least one of them must hold. In Ada these are tested
at run-time. In SPARK, they are verified statically (or not, in which case proof fails and an
error is indicated).
To verify substitutability via testing, all the tests for all superclass types are applied to
objects of the given subclass type. If all the parent tests pass, this provides a high degree
of confidence that objects of the new tagged type can properly substitute for parent type
objects. Note that static proof of consistency provides an even higher degree of confidence.

86 Chapter 8. Object-Oriented Programming (OOP)

Guidelines for Safe and Secure Ada / SPARK

8.7.3 Applicable Vulnerability within ISO TR 24772-2

• 6.42 Violations of the Liskov substitution principle of the contract model [BLP]
• 6.43 Redispatching [PPH]
• 6.44 Polymorphic variables [BKK]

8.7.4 Applicable Common Weakness Enumeration

N/A

8.7.5 Noncompliant Code Example

package P is
pragma Elaborate_Body;
type Rectangle is tagged private;
procedure Set_Width (This : in out Rectangle;

Value : Positive)
with

Post => Width (This) = Value and
Height (This) = Height (This'Old);

function Width (This : Rectangle) return Positive;

procedure Set_Height (This : in out Rectangle;
Value : Positive)

with
Post => Height (This) = Value and

Width (This) = Width (This'Old);

function Height (This : Rectangle) return Positive;

private
...

end P;

The postcondition for Set_Width states that the Height is not changed. Likewise, for
Set_Height, the postcondition asserts that the Width is not changed. However, these
postconditions are not class-wide so they are not inherited by subclasses.
Now, in a subclass Square, the operations are overridden so that setting the width also
sets the height to the same value, and vice versa. Thus the overridden operations do not
maintain type consistency, but this fact is neither detected at run-time, nor could SPARK
verify it statically (and SPARK is not used at all in these versions of the packages).

with P; use P;
package Q is

pragma Elaborate_Body;
type Square is new Rectangle with private;

overriding
procedure Set_Width (This : in out Square;

Value : Positive)
with

Post => Width (This) = Height (This);

overriding
procedure Set_Height (This : in out Square;

(continues on next page)

8.7. Ensure Local Type Consistency (OOP07) 87

Guidelines for Safe and Secure Ada / SPARK

(continued from previous page)
Value : Positive)

with
Post => Width (This) = Height (This);

private
...

end Q;

8.7.6 Compliant Code Example

package P with SPARK_Mode is
pragma Elaborate_Body;
type Rectangle is tagged private;

procedure Set_Width (This : in out Rectangle;
Value : Positive)

with
Post'Class => Width (This) = Value and

Height (This) = Height (This'Old);

function Width (This : Rectangle) return Positive;

procedure Set_Height (This : in out Rectangle;
Value : Positive)

with
Post'Class => Height (This) = Value and

Width (This) = Width (This'Old);

function Height (This : Rectangle) return Positive;

private
...

end P;

Now the postconditions are class-wide so they are inherited by subclasses. In the subclass
Square, the postconditions will not hold at run-time. Likewise, SPARK can now prove that
type consistency is not verified because the postconditions are weaker than those inherited:

with P; use P;
package Q with SPARK_Mode is

pragma Elaborate_Body;
type Square is new Rectangle with private;

overriding
procedure Set_Width (This : in out Square;

Value : Positive)
with

Post'Class => Width (This) = Height (This);

overriding
procedure Set_Height (This : in out Square;

Value : Positive)
with

Post'Class => Width (This) = Height (This);

private
type Square is new Rectangle with null record;

end Q;

88 Chapter 8. Object-Oriented Programming (OOP)

Guidelines for Safe and Secure Ada / SPARK

8.7.7 Notes

Verification can be achieved dynamically with the GNATtest tool, using the
--validate-type-extensions switch. SPARK enforces this rule.

8.7. Ensure Local Type Consistency (OOP07) 89

Guidelines for Safe and Secure Ada / SPARK

90 Chapter 8. Object-Oriented Programming (OOP)

CHAPTER

NINE

SOFTWARE ENGINEERING (SWE)

Goal
Maintainability

✓
Reliability

✓
Portability

✓
Performance
Security

✓
Description

These rules promote "best practices" for software development.
Rules

SWE01, SWE02, SWE03, SWE04

9.1 Use SPARK Extensively (SWE01)

Level → Advisory
Category

Safety
✓

Cyber
✓

Goal
Maintainability

✓
Reliability

✓
Portability

✓
Performance

✓
Security

✓

91

Guidelines for Safe and Secure Ada / SPARK

Remediation → High, as retrofit can be extensive
Verification Method → Compiler restrictions

9.1.1 Reference

SPARK User's Guide, section 8: "Applying SPARK in Practice"72

9.1.2 Description

SPARK has proven itself highly effective, both in terms of low defects, low development
costs, and high productivity. The guideline advises extensive use of SPARK, especially for
the sake of formally proving the most critical parts of the source code. The rest of the code
can be in SPARK as well, even if formal proof is not intended, with some parts in Ada when
features outside the SPARK subset are essential.

9.1.3 Applicable Vulnerability within ISO TR 24772-2

N/A

9.1.4 Applicable Common Weakness Enumeration

• CWE-670 - Always-Incorrect Control Flow Implementation73

• CWE-754 - Improper Check for Unusual or Exceptional Conditions74

9.1.5 Noncompliant Code Example

Any code outside the (very large) SPARK subset is flagged by the compiler.

9.1.6 Compliant Code Example

N/A

9.1.7 Notes

Violations are detected by the SPARK toolset.
72 https://docs.adacore.com/live/wave/spark2014/html/spark2014_ug/en/usage_scenarios.html
73 https://cwe.mitre.org/data/definitions/670.html
74 https://cwe.mitre.org/data/definitions/754.html

92 Chapter 9. Software Engineering (SWE)

https://docs.adacore.com/live/wave/spark2014/html/spark2014_ug/en/usage_scenarios.html
https://cwe.mitre.org/data/definitions/670.html
https://cwe.mitre.org/data/definitions/754.html

Guidelines for Safe and Secure Ada / SPARK

9.2 Enable Optional Warnings and Treat As Errors
(SWE02)

Level → Required
Category

Safety
✓

Cyber
✓

Goal
Maintainability

✓
Reliability

✓
Portability
Performance
Security

✓
Remediation → Low
Verification Method → Compiler restrictions

9.2.1 Reference

Power of 10 rule #10: "All code must be compiled, from the first day of development, with
all compiler warnings enabled at the most pedantic setting available. All code must compile
without warnings."

9.2.2 Description

The Ada compiler does a degree of static analysis itself, and generates many warnings
when they are enabled. These warnings likely indicate very real problems so they should
be examined and addressed, either by changing the code or disabling the warning for the
specific occurrence flagged in the source code.
To ensure that warnings are examined and addressed one way or the other, the compiler
must be configured to treat warnings as errors, i.e., preventing object code generation.
Note that warnings will occasionally be given for code usage that is intentional. In those
cases the warnings should be disabled by using pragma Warnings with the parameter
Off, and a string indicating the error message to be disabled. In other cases, a different
mechanism might be appropriate, such as aspect (or pragma) Unreferenced.

9.2. Enable Optional Warnings and Treat As Errors (SWE02) 93

Guidelines for Safe and Secure Ada / SPARK

9.2.3 Applicable Vulnerability within ISO TR 24772-2

• 6.18 Dead Store [WXQ]
• 6.19 Unused variable [YZS]
• 6.20 Identifier name reuse [YOW]
• 6.22 Initialization of variables [LAV]

9.2.4 Applicable Common Weakness Enumeration

• CWE-1127 - Compilation with Insufficient Warnings or Errors75

9.2.5 Noncompliant Code Example

procedure P (This : Obj) is
begin

... code not referencing This
end P;

The formal parameter controls dispatching for the sake of selecting the subprogram to be
called but does not participate in the implementation of the body.

9.2.6 Compliant Code Example

procedure P (This : Obj) is
pragma Unreferenced (This);

begin
... code not referencing This

end P;

The compiler will no longer issue a warning that the formal parameter This is not refer-
enced. Of course, if that changes and This becomes referenced, the compiler will flag the
pragma.

9.2.7 Notes

This rule can be applied via the GNAT -gnatwae compiler switch, which both enables warn-
ings and treats them as errors. Note that the switch enables almost all optional warnings,
but not all. Some optional warnings correspond to very specific circumstances, and would
otherwise generate too much noise for their value.
75 https://cwe.mitre.org/data/definitions/1127.html

94 Chapter 9. Software Engineering (SWE)

https://cwe.mitre.org/data/definitions/1127.html

Guidelines for Safe and Secure Ada / SPARK

9.3 Use a Static Analysis Tool Extensively (SWE03)

Level → Mandatory
Category

Safety
✓

Cyber
✓

Goal
Maintainability

✓
Reliability

✓
Portability

✓
Performance

✓
Security

✓
Remediation → High
Verification Method → Static analysis tools

9.3.1 Reference

Power of 10 rule #10: "All code must also be checked daily with at least one, but preferably
more than one, strong static source code analyzer and should pass all analyses with zero
warnings."

9.3.2 Description

If not using SPARK for regular development, use a static analyzer, such as CodePeer, ex-
tensively. No warnings or errors should remain unresolved at the given level adopted for
analysis (which can be selected to adjust the false positive ratio).
Specifically, any code checked into the configurationmanagement systemmust be checked
by the analyzer and be error-free prior to check-in. Similarly, each nightly build should
produce a CodePeer baseline for the project.

9.3. Use a Static Analysis Tool Extensively (SWE03) 95

Guidelines for Safe and Secure Ada / SPARK

9.3.3 Applicable Vulnerability within ISO TR 24772-2

• 6.6 Conversion errors [FLC]
• 6.18 Dead store [WXQ]
• 6.19 Unused variable [YZS]
• 6.20 Identifier name reuse [YOW]
• 6.24 Side-effects and order of evaluation [SAM]
• 6.25 Likely incorrect expression [KOA]

9.3.4 Applicable Common Weakness Enumeration

N/A

9.3.5 Noncompliant Code Example

N/A

9.3.6 Compliant Code Example

N/A

9.3.7 Notes

CodePeer is the recommended static analyzer. Note that CodePeer can detect GNATcheck
rule violations (via the --gnatcheck CodePeer switch and a rules file).

9.4 Hide Implementation Artifacts (SWE04)

Level → Advisory
Category

Safety
✓

Cyber
✓

Goal
Maintainability

✓
Reliability

✓
Portability
Performance
Security

✓

96 Chapter 9. Software Engineering (SWE)

Guidelines for Safe and Secure Ada / SPARK

Remediation → High, as retrofit can be extensive
Verification Method → GNATcheck rule: Visible_Components

9.4.1 Reference

MISRA C Rule 8.7: "Functions and objects should not be defined with external linkage if they
are referenced in only one translation unit."

9.4.2 Description

Do not make implementation artifacts compile-time visible to clients. Only make available
those declarations that define the abstraction presented to clients by the component. In
other words, define Abstract Data Types and use the language to enforce the abstraction.
This is a fundamental Object-Oriented Design principle.
This guideline minimizes client dependencies and thus allows the maximum flexibility for
changes in the underlying implementation. It minimizes the editing changes required for
client code when implementation changes are made.
This guideline also limits the region of code required to find any bugs to the package and
child packages, if any, defining the abstraction.
This guideline is to be followed extensively as the design default for components. Once the
application code size becomes non-trivial, the cost of retrofit is extremely high.

9.4.3 Applicable Vulnerability within ISO TR 24772-2

N/A

9.4.4 Applicable Common Weakness Enumeration

• CWE-496 - Public Data Assigned to Private Array-Typed Field76

• CWE-1061 - Insufficient Encapsulation77

9.4.5 Noncompliant Code Example

package Noncompliant is
type Content_T is array (Capacity_T range <>) of Integer;
type Stack_T (Capacity : Capacity_T) is tagged record

Content : Content_T (1 .. Capacity);
Top : Capacity_T := 0;

end record;
procedure Push
(Stack : in out Stack_T;
Item : Integer);

procedure Pop
(Stack : in out Stack_T;
Item : out Integer);

end Noncompliant;

76 https://cwe.mitre.org/data/definitions/496.html
77 https://cwe.mitre.org/data/definitions/1061.html

9.4. Hide Implementation Artifacts (SWE04) 97

https://cwe.mitre.org/data/definitions/496.html
https://cwe.mitre.org/data/definitions/1061.html

Guidelines for Safe and Secure Ada / SPARK

Note that both type Content_T, as well as the record type components of type Stack_T,
are visible to clients. Client code may declare variables of type Content_T and may di-
rectly access and modify the record components. Bugs introduced via this access could be
anywhere in the entire client codebase.

9.4.6 Compliant Code Example

package Compliant is
type Stack_T (Capacity : Capacity_T) is tagged private;
procedure Push
(Stack : in out Stack_T;
Item : Integer);

procedure Pop
(Stack : in out Stack_T;
Item : out Integer);

private
type Content_T is array (Capacity_T range <>) of Integer;
type Stack_T (Capacity : Capacity_T) is tagged record

Content : Content_T (1 .. Capacity);
Top : Capacity_T := 0;

end record;
end Compliant;

Type Content_T, as well as the record type components of type Stack_T, are no longer
visible to clients. Any bugs in the stack processing code must be in this package, or its
child packages, if any.

9.4.7 Notes

The GNATcheck rule specified above is not exhaustive.

98 Chapter 9. Software Engineering (SWE)

CHAPTER

TEN

REFERENCES

• AdaCore. SPARK 2014 User's Guide.80

• Adacore. GNAT User's Guide for Native Platforms81

• AdaCore. "GNATstack User's Guide"82

80 http://docs.adacore.com/spark2014-docs/html/ug/index.html
81 http://docs.adacore.com/live/wave/gnat_ugn/html/gnat_ugn/gnat_ugn.html
82 http://docs.adacore.com/live/wave/gnatstack/html/gnatstack_ug/index.html

99

http://docs.adacore.com/spark2014-docs/html/ug/index.html
http://docs.adacore.com/live/wave/gnat_ugn/html/gnat_ugn/gnat_ugn.html
http://docs.adacore.com/live/wave/gnatstack/html/gnatstack_ug/index.html

Guidelines for Safe and Secure Ada / SPARK

100 Chapter 10. References

BIBLIOGRAPHY

[SEI-C] The Software Engineering Institute. SEI CERT C Coding Standard.
[MISRA2013] MISRA. 2015. Guidelines for the Use of the C Language in Critical Systems

[Holzmann2006] Holzmann, G. J. 2006. The Power of 10: Rules for Developing Safety-
Critical Code

[ISO2000] ISO/IEC High Integrity Rapporteur Group. 2000. "ISO/IEC TR 15942:2000 Guide
for the Use of the Ada Programming Language in High Integrity Systems."
ISO/IEC TR 15942:2000, July

[AdaRM2016] ISO/IEC. 2016. ISO/IEC JTC 1/SC 22/WG9 Ada Reference Manual - Language
and Standard Libraries-ISO/IEC 8652:2012/Cor 1:2016

[AdaRM2020] ISO/IEC. 2020. ISO/IEC JTC 1/SC 22/WG9 Ada Reference Manual - Language
and Standard Libraries-ISO/IEC 8652:2020

[AdaOOP2016] AdaCore. 2016. High-Integrity Object-Oriented Programming in Ada, Version
1.478

[LiskovWing1994] Liskov, B. and Wing, J. 1994. "A Behavioral Notion of Subtyping." ACM
Transactions on Programming Languages and Systems (TOPLAS) Vol. 16, Issue
6 (November): 1811-1841.

[DO178C] RTCA DO-178C/EUROCAE ED-12C. 2011. Software Considerations in Airborne
Systems and Equipment Certification

[Meyer1997] Meyer, B. 1997. "Object-Oriented Software Construction." Prentice Hall Pro-
fessional Technical Reference (2nd Edition)

[MITRE_CWE] MITRE. Common Weakness Enumeration (CWE)79

[SEI-Java] The Software Engineering Institute. SEI CERT Oracle Coding Standard for Java

[TR24772] ISO/IEC. 2022. ISO/IEC TR 24772-2:20 Programming Languages - Guidance to
Avoiding Vulnerabilities in Programming Languages - Part 2: Ada

78 https://www.adacore.com/uploads/techPapers/HighIntegrityAda.pdf
79 https://cwe.mitre.org/index.html

101

https://www.adacore.com/uploads/techPapers/HighIntegrityAda.pdf
https://www.adacore.com/uploads/techPapers/HighIntegrityAda.pdf
https://cwe.mitre.org/index.html

	Introduction
	Scope
	Structure
	Enforcement
	About the Rules
	Mapping to Other Standards

	Definitions
	Level
	Remediation

	Dynamic Storage Management (DYN)
	Common High Integrity Restrictions (DYN01)
	Reference
	Description
	Applicable Vulnerability within ISO TR 24772-2
	Applicable Common Weakness Enumeration
	Noncompliant Code Example
	Compliant Code Example
	Notes

	Traditional Static Allocation Policy (DYN02)
	Reference
	Description
	Applicable Vulnerability within ISO TR 24772-2
	Applicable Common Weakness Enumeration
	Noncompliant Code Example
	Compliant Code Example
	Notes

	Access Types Without Allocators Policy (DYN03)
	Reference
	Description
	Applicable Vulnerability within ISO TR 24772-2
	Applicable Common Weakness Enumeration
	Noncompliant Code Example
	Compliant Code Example
	Notes

	Minimal Dynamic Allocation Policy (DYN04)
	Reference
	Description
	Applicable Vulnerability within ISO TR 24772-2
	Applicable Common Weakness Enumeration
	Noncompliant Code Example
	Compliant Code Example
	Notes

	User-Defined Storage Pools Policy (DYN05)
	Reference
	Description
	Applicable Vulnerability within ISO TR 24772-2
	Applicable Common Weakness Enumeration
	Noncompliant Code Example
	Compliant Code Example
	Notes

	Statically Determine Maximum Stack Requirements (DYN06)
	Reference
	Description
	Applicable Vulnerability within ISO TR 24772-2
	Applicable Common Weakness Enumeration
	Noncompliant Code Example
	Compliant Code Example
	Notes

	Safe Reclamation (RCL)
	No Multiple Reclamations (RCL01)
	Reference
	Description
	Applicable Vulnerability within ISO TR 24772-2
	Applicable Common Weakness Enumeration
	Noncompliant Code Example
	Compliant Code Example
	Notes

	Only Reclaim Allocated Storage (RCL02)
	Reference
	Description
	Applicable Vulnerability within ISO TR 24772-2
	Applicable Common Weakness Enumeration
	Noncompliant Code Example
	Compliant Code Example
	Notes

	Only Reclaim to the Same Pool (RCL03)
	Reference
	Description
	Applicable Vulnerability within ISO TR 24772-2
	Applicable Common Weakness Enumeration
	Noncompliant Code Example
	Compliant Code Example
	Notes

	Concurrency (CON)
	Use the Ravenscar Profile (CON01)
	Reference
	Description
	Applicable Vulnerability within ISO TR 24772-2
	Applicable Common Weakness Enumeration
	Noncompliant Code Example
	Compliant Code Example
	Notes

	Use the Jorvik Profile (CON02)
	Reference
	Description
	Applicable Vulnerability within ISO TR 24772-2
	Applicable Common Weakness Enumeration
	Noncompliant Code Example
	Compliant Code Example
	Notes

	Avoid Shared Variables for Inter-task Communication (CON03)
	Reference
	Description
	Applicable Vulnerability within ISO TR 24772-2
	Applicable Common Weakness Enumeration
	Noncompliant Code Example
	Compliant Code Example
	Notes

	Robust Programming Practice (RPP)
	No Use of "others" in Case Constructs (RPP01)
	Reference
	Description
	Applicable Vulnerability within ISO TR 24772-2
	Applicable Common Weakness Enumeration
	Noncompliant Code Example
	Compliant Code Example
	Notes

	No Enumeration Ranges in Case Constructs (RPP02)
	Reference
	Description
	Applicable Vulnerability within ISO TR 24772-2
	Applicable Common Weakness Enumeration
	Noncompliant Code Example
	Compliant Code Example
	Notes

	Limited Use of "others" in Aggregates (RPP03)
	Reference
	Description
	Applicable Vulnerability within ISO TR 24772-2
	Applicable Common Weakness Enumeration
	Noncompliant Code Example
	Compliant Code Example
	Notes

	No Unassigned Mode-Out Procedure Parameters (RPP04)
	Reference
	Description
	Applicable Vulnerability within ISO TR 24772-2
	Applicable Common Weakness Enumeration
	Noncompliant Code Example
	Compliant Code Example
	Notes

	No Use of "others" in Exception Handlers (RPP05)
	Reference
	Description
	Applicable Vulnerability within ISO TR 24772-2
	Applicable Common Weakness Enumeration
	Noncompliant Code Example
	Compliant Code Example
	Notes

	Avoid Function Side-Effects (RPP06)
	Reference
	Description
	Applicable Vulnerability within ISO TR 24772-2
	Applicable Common Weakness Enumeration
	Noncompliant Code Example
	Compliant Code Example
	Notes

	Functions Only Have Mode "in" (RPP07)
	Reference
	Description
	Applicable Vulnerability within ISO TR 24772-2
	Applicable Common Weakness Enumeration
	Noncompliant Code Example
	Compliant Code Example
	Notes

	Limit Parameter Aliasing (RPP08)
	Reference
	Description
	Applicable Vulnerability within ISO TR 24772-2
	Applicable Common Weakness Enumeration
	Noncompliant Code Example
	Compliant Code Example
	Notes

	Use Precondition and Postcondition Contracts (RPP09)
	Reference
	Description
	Applicable Vulnerability within ISO TR 24772-2
	Applicable Common Weakness Enumeration
	Noncompliant Code Example
	Compliant Code Example
	Notes

	Do Not Re-Verify Preconditions in Subprogram Bodies (RPP10)
	Reference
	Description
	Applicable Vulnerability within ISO TR 24772-2
	Applicable Common Weakness Enumeration
	Noncompliant Code Example
	Compliant Code Example
	Notes

	Always Use the Result of Function Calls (RPP11)
	Reference
	Description
	Applicable Vulnerability within ISO TR 24772-2
	Applicable Common Weakness Enumeration
	Noncompliant Code Example
	Compliant Code Example
	Notes

	No Recursion (RPP12)
	Reference
	Description
	Applicable Vulnerability within ISO TR 24772-2
	Applicable Common Weakness Enumeration
	Noncompliant Code Example
	Compliant Code Example
	Notes

	No Reuse of Standard Typemarks (RPP13)
	Reference
	Description
	Applicable Vulnerability within ISO TR 24772-2
	Applicable Common Weakness Enumeration
	Noncompliant Code Example
	Compliant Code Example
	Notes

	Use Symbolic Constants for Literal Values (RPP14)
	Reference
	Description
	Applicable Vulnerability within ISO TR 24772-2
	Applicable Common Weakness Enumeration
	Noncompliant Code Example
	Compliant Code Example
	Notes

	Exception Usage (EXU)
	Do Not Raise Language-Defined Exceptions (EXU01)
	Reference
	Description
	Applicable Vulnerability within ISO TR 24772-2
	Applicable Common Weakness Enumeration
	Noncompliant Code Example
	Compliant Code Example
	Notes

	No Unhandled Application-Defined Exceptions (EXU02)
	Reference
	Description
	Applicable Vulnerability within ISO TR 24772-2
	Applicable Common Weakness Enumeration
	Noncompliant Code Example
	Compliant Code Example
	Notes

	No Exception Propagation Beyond Name Visibility (EXU03)
	Reference
	Description
	Applicable Vulnerability within ISO TR 24772-2
	Applicable Common Weakness Enumeration
	Noncompliant Code Example
	Compliant Code Example
	Notes

	Prove Absence of Run-time Exceptions (EXU04)
	Reference
	Description
	Applicable Vulnerability within ISO TR 24772-2
	Applicable Common Weakness Enumeration
	Noncompliant Code Example
	Compliant Code Example
	Notes

	Object-Oriented Programming (OOP)
	No Class-wide Constructs Policy (OOP01)
	Reference
	Description
	Applicable Vulnerability within ISO TR 24772-2
	Applicable Common Weakness Enumeration
	Noncompliant Code Example
	Compliant Code Example
	Notes

	Static Dispatching Only Policy (OOP02)
	Reference
	Description
	Applicable Vulnerability within ISO TR 24772-2
	Applicable Common Weakness Enumeration
	Noncompliant Code Example
	Compliant Code Example
	Notes

	Limit Inheritance Hierarchy Depth (OOP03)
	Reference
	Description
	Applicable Vulnerability within ISO TR 24772-2
	Applicable Common Weakness Enumeration
	Noncompliant Code Example
	Compliant Code Example
	Notes

	Limit Statically-Dispatched Calls to Primitive Operations (OOP04)
	Reference
	Description
	Applicable Vulnerability within ISO TR 24772-2
	Applicable Common Weakness Enumeration
	Noncompliant Code Example
	Compliant Code Example
	Notes

	Use Explicit Overriding Annotations (OOP05)
	Reference
	Description
	Applicable Vulnerability within ISO TR 24772-2
	Applicable Common Weakness Enumeration
	Noncompliant Code Example
	Compliant Code Example
	Notes

	Use Class-wide Pre/Post Contracts (OOP06)
	Reference
	Description
	Applicable Vulnerability within ISO TR 24772-2
	Applicable Common Weakness Enumeration
	Noncompliant Code Example
	Compliant Code Example
	Notes

	Ensure Local Type Consistency (OOP07)
	Reference
	Description
	Applicable Vulnerability within ISO TR 24772-2
	Applicable Common Weakness Enumeration
	Noncompliant Code Example
	Compliant Code Example
	Notes

	Software Engineering (SWE)
	Use SPARK Extensively (SWE01)
	Reference
	Description
	Applicable Vulnerability within ISO TR 24772-2
	Applicable Common Weakness Enumeration
	Noncompliant Code Example
	Compliant Code Example
	Notes

	Enable Optional Warnings and Treat As Errors (SWE02)
	Reference
	Description
	Applicable Vulnerability within ISO TR 24772-2
	Applicable Common Weakness Enumeration
	Noncompliant Code Example
	Compliant Code Example
	Notes

	Use a Static Analysis Tool Extensively (SWE03)
	Reference
	Description
	Applicable Vulnerability within ISO TR 24772-2
	Applicable Common Weakness Enumeration
	Noncompliant Code Example
	Compliant Code Example
	Notes

	Hide Implementation Artifacts (SWE04)
	Reference
	Description
	Applicable Vulnerability within ISO TR 24772-2
	Applicable Common Weakness Enumeration
	Noncompliant Code Example
	Compliant Code Example
	Notes

	References
	Bibliography

