w”.‘;-,:“ 3

%m;-mmn,‘

>

A

\!

LEARN.

ADACORE.CO
\

LEARN.

ADACORE.COM

Advanced SPARK
Release 2024-09

Patrick Rogers

Sep 08, 2024

1

ubprogram Contracts

S
1
1
1
1.
1
1
1
1
1
1
1
1

1.
1.1
1.1
1.1
1.1
1.1
1.1
1.1
1.1
1.1

2 Type Contracts

2.1 Type Contracts in Ada 2012 and SPARK 2014
2.2 Static and Dynamic Predicates
2.2.1 StaticPredicate.
2.2.2 DynamicPredicate.,
2.2.3 Restrictions on Types With Dynamic Predicate
2.2.4 Dynamic Checking of Predicates
2.2.5 Temporary Violations of the Dynamic Predicate
2.3 Typelnvariant e
2.3.1 Dynamic Checking of Type Invariants.
Inheritance of Predicates and Type Invariants

Other Useful Gotchas on Predicates and Type Invariants

NN
Nouhs

NNNNN
NN
SOuUTh WN

1 Subprogram Contracts in Ada 2012 and SPARK 2014
2 Dynamic Execution of Subprogram Contracts
3 Dynamic Behavior when Subprogram Contracts Fail
4 Precondition e
5 Postcondition L L e
6 ContractCases i it
7 Attribute 'Old
8 Implication and Equivalence
9 Reasoningby Cases
10 Universal and Existential Quantification
11 Expression Functions oL
12 Code Examples /Pitfalls
121 Example #1
22Example #2 e
23 Example #3 e
24Example #4
25Example #5
26 Example #6 oo
2.7 Example #7 e
28 Example #8 e
29Example #9 e
2. 1Example #10

Default Initial Condition
Code Examples /Pitfalls
2.7.1 Example #1 e
Example #2 e
Example #3 e
Example #4
Example #5
Example #6

CONTENTS:

3

2.7.7 Example #7 . . . e e e e e e e e e 24
2.7.8 Example #8 e e 25
2.7.9 Example #9 e e 25
2.7.10 Example #10 e e 26
Systems Programming 27
3.1 Type Contracts in Ada 2012 and SPARK 2014, 27
3.2 Systems Programming - Whatisit? 27
3.3 Systems Programming - How can SPARK help? 27
3.4 Systems Programming - A trivialexample, 28
3.5 Volatile Variables and Volatile Types o 28
3.6 Flavors of Volatile Variables 29
3.6.1 Using Async_Readers /Async Writers 29
3.6.2 Using Effective Reads /Effective Writes 30
3.6.3 Combinations of Flavors of Volatile Variables 31
3.7 Constraints on Volatile Variables 31
3.8 Constraints on Volatile Functions 33
3.9 State Abstraction on Volatile Variables 0. 34
3.10 Constraints on Address Attribute o e 35
3.11 Can something be known of volatile variables? 36
3.12 Other Concerns in Systems Programming 37
3.13 Code Examples / Pitfalls 37
3131 Example #1 L e e 37
3132 Example #2 . . . e e e 38
3133 Example #3 . . . L e e e 38
3.13. 4 Example #4 . . o e e e e e e e 39
3.13. 5 Example #5 . . . e e e e 40
3136 Example #6 e e 40
3.13.7 Example #7 e e 41
3.13.8 Example #8 e e e e 42
3.13.9 Example #9 e 42
3.13. 1Example #10 e e e e e 43
Concurrency 45
4.1 Concurrency # Parallelism e 45
4.2 Concurrent Program StructureinAda o 45
4.3 The problems with concurrency 46
4.4 Ravenscar - the Ada solution to concurrency problems 46
4.5 Concurrent Program StructureinRavenscar 47
4.6 Ravenscar - the SPARK solution to concurrency problems. 47
4.7 Concurrency - Atrivialexample o e 47
4.8 Setup for using concurrency in SPARK L e 48
4.9 Tasksin RavenscCar v v i i i i e e e e e 48
4.10 Communication Between Tasks in Ravenscar 49
4.11 Protected Objectsin Ravenscar i i i i ittt 49
4.12 Protected Communication with Procedures & Functions 50
4.13 Blocking Communication with Entries 51
4.14 Relaxed Constraints on Entries with Extended Ravenscar 51
4.15 Interrupt Handlers in Ravenscar i i 52
4.16 Other Communications Between Tasks in SPARK 53
4.17 Data and Flow Dependenciesof Tasks 53
4.18 State Abstraction over Synchronized Variables 53
4.19 Synchronized Abstract State in the Standard Library 54
4.20 Code Examples /Pitfalls 55
4.20. 1 Example #L . . . o e e e e 55
4.20.2 Example #2 e e 55
4.20.3 Example #3 e e e e e 56
4.20.4 Example #4 e e 57

5

4.20.5 Example #5 e e e e 57

4.20.6 Example #6 e e e 58
4.20.7 Example #7 . . . e e e e 59
4.20.8 Example #8 e e e 60
4.20.9 Example #9 e e e 61
4.20.1Example #10 e e e 62
Object-oriented Programming 65
5.1 Whatis Object Oriented Programming? 65
5.2 Prototypes and Scopes in SPARK e 65
5.3 Classes in SPARK e e e e 66
5.4 Methods in SPARK e 66
5.5 Dynamic dispatchingin SPARK 68
5.5.1 Atrivialexample o e 69
5.5.2 The problems with dynamic dispatching 69
5.6 LSP - the SPARK solution to dynamic dispatching problems 70
5.6.1 Verification of dynamic dispatchingcalls. 71
5.6.2 Class-wide contracts and data abstraction 71
5.6.3 Class-wide contracts, data abstraction and overriding 72
5.7 Dynamic semantics of class-wide contracts 73
5.8 Redispatching and Extensions Visibleaspect 74
5.9 Code Examples/Pitfalls 74
5.9.1 Example #1 e e 74
5.9.2 Example #2 e e 75
5.9.3 Example #3 e e 75
5.9.4 Example #4 e e e e 76
5.9.5 Example #5 e e 76
5.9.6 Example #6 e e 77
5.9.7 Example #7 e e e 77
5.9.8 Example #8 e e 78
5.9.9 Example #9 e e 80
5.9.10 Example #10 e e e e 81
Ghost Code 83
6.1 Whatis ghostcode? e 83
6.2 Ghostcode - Atrivialexample e 83
6.3 Ghost variables - aka auxiliary variables 84
6.4 Ghost variables - non-interferencerules 84
6.5 Ghoststatements. e e 85
6.6 Ghostprocedures e e 86
6.7 Ghostfunctions 86
6.8 Imported ghost functions 87
6.9 Ghost packages and ghost abstractstate, 88
6.10 Executing ghostcode e e 88
6.11 Examples of USe e e e 89
6.11.1 Encoding a state automaton L Lo oL 89
6.11.2 Expressing useful lemmas 89
6.11.3 Specifying an APl throughamodel 90
6.12 Extreme proving with ghost code - red black trees in SPARK 90
6.13 Positioning ghost code in proof techniques. 91
6.14 Code Examples /Pitfalls 91
6.14.1 Example #1 e e e e e 91
6.14.2 Example #2 e e e 92
6.14.3 Example #3 e 92
6.14.4 Example #4 e e e 93
6.14.5 Example #5 e e e 94
6.14.6 Example #6 e e e e e 94
6.14.7 Example #7 e e 95

6.14.8 Example #8 e e e 95

6.14.9 Example #9 e 96
6.14.1Example #10 e e e e 96

7 Test and Proof 99
7.1 Various Combinations of Testsand Proofs 99
7.2 Test (be)for(e) Proof e e e 99
7.2.1 Activating Run-time Checks, 99
7.2.2 Activating Assertions e e 100
7.2.3 Activating GhostCode e 100

7.3 Testfor Proof. e e 100
7.3.1 Overflow CheckingMode, 100

7.4 Testalongside Proof 101
7.4.1 Checking Proof Assumptions 101
7.4.2 Rules for DefiningtheBoundary 101
7.4.3 Special Compilation Switches 101

7.5 Testas Proof e e e e e e e 102
7.5.1 Feasibility of Exhaustive Testing 102

7.6 Testontopof Proof e 102
7.6.1 Combining Unit Proof and IntegrationTest 102

7.7 TestExamples/Pitfalls. e 102
7.7.1 Example #1 e e 102
7.7.2 Example #2 e 103
7.7.3 Example #3 . . . e e e e 103
7.7.4 Example #4 e e e 103
7.7.5 Example #5 e e e 103
7.7.6 Example #6 e e e e 103
7.7.7 Example #7 e e 103
7.7.8 Example #8 e 104
7.7.9 Example #9 e e 104
7.7.10 Example #10 e e e e 104

Advanced SPARK

Warning

This version of the website contains UNPUBLISHED contents. Please do not share it
externally!

Copyright © 2022, AdaCore

This book is published under a CC BY-SA license, which means that you can copy, redis-
tribute, remix, transform, and build upon the content for any purpose, even commercially,
as long as you give appropriate credit, provide a link to the license, and indicate if changes
were made. If you remix, transform, or build upon the material, you must distribute your
contributions under the same license as the original. You can find license details on this

pagel

This course will teach you advanced topics of SPARK.

O Note

The code examples in this course use an 80-column limit, which is a typical limit for Ada
code. Note that, on devices with a small screen size, some code examples might be
difficult to read.

O Note

Each code example from this book has an associated "code block metadata", which
contains the name of the "project" and an MD5 hash value. This information is used to
identify a single code example.

You can find all code examples in a zip file, which you can download from the learn
website?. The directory structure in the zip file is based on the code block metadata.
For example, if you're searching for a code example with this metadata:

* Project: Courses.Intro_To_Ada.Imperative_Language.Greet
e MD5: cba89a34b87c9dfa71533d982d05e6ab
you will find it in this directory:

projects/Courses/Intro To Ada/Imperative Language/Greet/
cbaB89a34b87c9dfa71533d982d05e6ab/

In order to use this code example, just follow these steps:
1. Unpack the zip file;
2. Go to target directory;
3. Start GNAT Studio on this directory;
4

. Build (or compile) the project;

L http://creativecommons.org/licenses/by-sa/4.0

CONTENTS: 1

http://creativecommons.org/licenses/by-sa/4.0
http://creativecommons.org/licenses/by-sa/4.0
https://learn.adacore.com/zip/learning-ada_code.zip
https://learn.adacore.com/zip/learning-ada_code.zip

Advanced SPARK

5. Run the application (if a main procedure is available in the project).

2 https://learn.adacore.com/zip/learning-ada_code.zip

2 CONTENTS:

CHAPTER
ONE

SUBPROGRAM CONTRACTS

1.1 Subprogram Contracts in Ada 2012 and SPARK 2014

* Originate in Floyd-Hoare logic (1967-1969)
- a Hoare triple {P}C{Q}
- P is the precondition before executing command C
- Q is the postcondition after executing command C
* Executable version by Meyer in Eiffel (1988)
- Called Design by Contract ™
- Precondition is checked dynamically before a routine starts
- Postcondition is checked dynamically when a routine returns
* SPARK 2014 combines both views
- SPARK 2005 version was only logic, Ada version is only executable

1.2 Dynamic Execution of Subprogram Contracts

» Contract on subprogram declaration

- Different from subprogram body in general (but not always)

Ada Reference Manual allows implementations choice
- Contract can be checked in the caller or in the callee

- GNAT's choice is to execute in the callee

GNAT introduces wrappers in some cases for contracts

- For an imported subprogram (e.g. from C) with a contract

- For cases where contracts on static call/dispatching are different
* Contracts are not enabled by default
- Switch -gnata enables dynamic checking of contracts in GNAT

® N o U A W N e

® N o U A W N e

©® N O U A W N R

Advanced SPARK

1.3 Dynamic Behavior when Subprogram Contracts Fail

* Violation of contract raises an exception

- Standard exception Assertion Error is raised (same as for pragma Assert and
all other assertions)

- Exception cannot be caught by subprogram's own exception handler implemen-
tation choice caller/callee has no effect

- Idiom allows to select another exception

Listing 1: show_dynamic_behavior.ads

with Ada.Numerics; use Ada.Numerics;
package Show_Dynamic_Behavior is

function Sqrt (X : Float) return Float with
Pre => X >= 0.0 or else raise Argument Error;

end Show Dynamic Behavior;
» Control over sequencing of checks

- Typical pre/post is a conjunction of Boolean conditions

- Use and when no possible RTE, and then otherwise (recommended for SPARK)

1.4 Precondition

* Better alternative to defensive programming, compare

Listing 2: show_precondition.ads

with Ada.Numerics; use Ada.Numerics;
package Show_Precondition is

function Sqrt (X : Float) return Float with
Pre => X >= 0.0 or else raise Argument Error;

end Show Precondition;
and

Listing 3: show_precondition.ads

with Ada.Numerics; use Ada.Numerics;
package Show Precondition is

-- X should be non-negative or Argument Error is raised
function Sqrt (X : Float) return Float;

end Show Precondition;

4 Chapter 1. Subprogram Contracts

© ©® N o U A W N R

L i < e
o A W N B O

Advanced SPARK

Listing 4: show_precondition.adb

package body Show_Precondition is

function Sqrt (X : Float) return Float is
Res : Float := 0.0;

begin
if X >= 0.0 then

raise Argument Error;

end if;
-- [...]

return Res;
end Sqrt;

end Show Precondition;

* Preconditions can be activated alone

pragma Assertion Policy (Pre => Check);

1.5 Postcondition

* Single place to check all return paths from the subprogram

- Avoids duplication of checks before each return statement

- Much more robust during maintenance

- Only applies to normal returns (not in exception, not on abort)

e Can relate input and output values

- Special attribute X'01ld for referring to input value of variable X

- Special attribute Func'Result for referring to result of function Func

- Special attribute Rec'Update or Arr'Update for referring to modified value of

record Rec or array Arr

* replaced by delta aggregate syntax in Ada 202X: (Rec with delta Comp =>

Value)

1.6 Contract Cases

* Convenient syntax to express a contract by cases

Cases must be disjoint and complete (forming a partition)
Introduced in SPARK, planned for inclusion in Ada 202X
Case is (guard => consequence) with '0ld / 'Result in consequence

Can be used in combination with precondition/postcondition

1.5. Postcondition

© @ N o U A W N e

=
o

© ©® N o U A W N R

e e i
o A W N B O

Advanced SPARK

Listing 5: show_contract cases.ads

package Show_Contract_Cases is

function Sqrt (X : Float) return Float with
Contract Cases =>

(X > 1.0 => Sqrt'Result <= X,
X=1.0 => Sqrt'Result = 1.0,
X < 1.0 and X > 0.0 => Sqrt'Result >= X,
X =0.0 => Sqrt'Result = 0.0);

end Show Contract Cases;

» Both a precondition and a postcondition
- On subprogram entry, exactly one guard must hold

- On subprogram exit, the corresponding consequence must hold

1.7 Attribute '0ld

» X'0ld expresses the input value of X in postconditions

- Same as X when variable not modified in the subprogram

- Compilerinserts a copy of X on subprogram entry if X is large, copy can be expen-

sive in memory footprint!

- X can be a variable, a function call, a qualification (but not limited!)

Listing 6: show_attribute_old.ads
package Show_Attribute_O0ld is
type Value is new Integer;
type My_Range is range 1 .. 10;
type My _Array is array (My Range) of Value;
procedure Extract (A : in out My Array;
J My Range;
Vo out Value)
with
Post => (if J in A'Range then V = A (J)'0ld and A (J) = 0);
end Show Attribute 0ld;
* Expr'0ld is rejected in potentially unevaluated context
- pragma Unevaluated Use Of 0ld (Allow) allows it
- In Ada, user is responsible - in SPARK, user can rely on proof

6 Chapter 1. Subprogram Contracts

© ® N o U A W N R

e e e e <
© ©® N o U0 B W N = O

Advanced SPARK

1.8 Implication and Equivalence

* If-expression can be used to express an implication
- (if A then B) expresses the logical implication
* A - B
- (if A then B else C) expresses the formula
* (A - B) (-A - (C)
- (if A then B else C) can also be used with B, C not of Boolean type

- (A <= B) should not be used for expressing implication (same dynamic semantics,
but less readable, and harmful in SPARK)

* Equality can be used to express an equivalence
- (A = B) expresses the logical equivalence
* (A o B)

- A double implication should not be used for expressing equivalence (same seman-
tics, but less readable and maintainable)

1.9 Reasoning by Cases

» Case-expression can be used to reason by cases
- Case test only on values of expressions of discrete type

- Can sometimes be an alternative to contract cases

Listing 7: show_case_expression.ads
with Ada.Text I0;
package Show Case Expression is
type File_Mode is (Open, Active, Closed);
type File is record
F Type : Ada.Text IO.File_Type;
Mode : File Mode;

end record;

procedure Open (F : in out File; Success : out Boolean) with

Post =>
(case F.Mode'0Old is
when Open => Success,

when Active => not Success,
when Closed => Success = (F.Mode = Open));

end Show Case Expression;

* Can sometimes be used at different levels in the expression

procedure Open (F : in out File; Success : out Boolean) with
Post =>
Success = (case F.Mode'Old 1is
when Open => True,
(continues on next page)

1.8. Implication and Equivalence 7

Advanced SPARK

(continued from previous page)
when Active => False,
when Closed => F.Mode = Open);

1.10 Universal and Existential Quantification

* Quantified expressions can be used to express a property over a collection of values

- (for all X in A .. B => () expresses the universally quantified property
* (VX . X=zA[OX=B>-2C)
- (for some X in A .. B => () expresses the universally quantified property

* (3 X . X=A[OX=B[AC()

* Quantified expressions translated as loops at run time

A

- Control exits the loop as soon as the condition becomes false (resp. true) for a
universally (resp. existentially) quantified expression

* Quantification forms over array and collection content

- Syntax uses (for all/some V of ... => ()

1.11 Expression Functions

* Without abstraction, contracts can become unreadable
- Also, use of quantifications can make them unprovable

» Expression functions provide the means to abstract contracts
- Expression function is a function consisting in an expression
- Definition can complete a previous declaration

- Definition is allowed in a package spec! (crucial for proof with SPARK)

function Valid Configuration return Boolean is
(case Cur_State is
when Piece Falling | Piece Blocked =>
No Overlap (Cur Board, Cur_Piece),
when Board Before Clean => True,
when Board After Clean =>
No Complete Lines (Cur Board));

1.12 Code Examples / Pitfalls

1.12.1 Example #1

8 Chapter 1. Subprogram Contracts

© O N U A W N e

e~ e e < e
© ©® N o U A W N = O

© @ N o U A W N R

T L N e i
© N o U A W N =B O

Advanced SPARK

Listing 8: example_01.adb

with Ada.Assertions; use Ada.Assertions;
procedure Example 01 is

-- Fail systematically fails a precondition and catches the
-- resulting exception.

procedure Fail (Condition : Boolean) with
Pre => Condition

is
Bad Condition : Boolean := False;
begin
Fail (Bad Condition);
exception
when Assertion Error => return;
end Fail;
begin
null;

end Example 01;

This code is not correct. The exception from the recursive call is always caught in the
handler, but not the exception raised if caller of Fail passes False as value for Condition.

1.12.2 Example #2

Listing 9: example_02.ads

with Interfaces.C; use Interfaces.(C;
package Example_02 is

procedure Memset

(B : in out char_array;
Ch : char;
N size t)
with
Import,

Pre => N <= B'lLength,
Post => (for all Idx in B'Range =>
(if Idx < B'First + N then
B (Idx) = Ch
else
B (Idx) = B'Old (Idx)));

end Example 02;

This code is correct. GNAT will create a wrapper for checking the precondition and postcon-
dition of Memset, calling the imported memset from libc.

1.12. Code Examples / Pitfalls 9

© @ N o U A W N R

10
11
12

14
15
16
17

© @ N U A W N e

S N e
N o U A W N B O

Advanced SPARK

1.12.3 Example #3

Listing 10: example_03.adb

procedure Example 03 is

pragma Assertion Policy (Pre => Ignore);
function Sqrt (X : Float) return Float with
Pre => X >= 0.0;

pragma Assertion Policy (Pre => Check);
function Sqrt (X : Float) return Float is
Ret : Float := 0.0;
begin
-- missing implementation. ..
return Ret;
end Sqrt;

begin
null;
end Example 03;

This code is not correct. Although GNAT inserts precondition checks in the subprogram
body instead of its caller, it is the value of Pre assertion policy at the declaration of the
subprogram that decides if preconditions are activated.

1.12.4 Example #4

Listing 11: example_04.adb

procedure Example 04 is

function Sqrt (X : Float) return Float with
Pre => X >= 0.0;

function Sqrt (X : Float) return Float with
Pre == X >= 0.0

is
Ret : Float := 0.0;

begin
-- missing implementation. ..
return Ret;

end Sqrt;

begin
null;

end Example 04;

This code is not correct. Contract is allowed only on the spec of a subprogram. Hence it is
not allowed on the body when a separate spec is available.

10 Chapter 1. Subprogram Contracts

© @ N U A W N R

e e <
U A W N F O

© @ N U A W N e

R
N B O

©W @ N U A W N e

=R e
N = O

Advanced SPARK

1.12.5 Example #5

Listing 12: example_05.adb

procedure Example 05 is

procedure Add (X, Y : Natural; Z :

Contract Cases =>
(X <= Integer'Last - Y => Z
others = 7
is
begin
Z = 0;
Z = X+Y;
end Add;

begin
null;
end Example 05;

This code is not correct. Postcondition is only relevant for normal returns.

1.12.6 Example #6

out Integer) with

X+Y,
0)

Listing 13: example_06.adb

procedure Example 06 is
procedure Add (X
Post => Z = X
is
begin
Z :=0;
Z =X +Y;
end Add;
begin
null;
end Example 06;

, Y
+ Y

: Natural; Z :

out Integer) with

This code is correct. Procedure may raise an exception, but postcondition correctly de-

scribes normal returns.

1.12.7 Example #7

Listing 14: example_07.adb

procedure Example 07 is

procedure Add (X, Y : Natural; Z :

Pre => X <= Integer'lLast - Y,
Post => Z =X +Y
is
begin
Z =X +Y;
end Add;
begin
null;
end Example 07;

out Integer) with

1.12. Code Examples / Pitfalls

11

© ©® N o U A W N K

e
A W N = O

W @ N U A W N e

R e
N B O

©® N O U A W N

Advanced SPARK

This code is correct. Precondition prevents exception inside Add. Postcondition is always
satisfied.

1.12.8 Example #8

Listing 15: example_08.ads
package Example_08 is

procedure Memset
(B : in out String;

Ch : Character;
N Natural)
with

Pre => N <= B'lLength,
Post => (for all Idx in B'Range =>
(1f Idx < B'First + N then
B (Idx) = Ch
else
B (Idx) = B (Idx)'0ld));
end Example 08;

This code is not correct. '0ld on expression including a quantified variable is not allowed.

1.12.9 Example #9

Listing 16: example_09.ads
package Example 09 is

procedure Memset
(B : in out String;

Ch : Character;
N Natural)
with

Pre => N <= B'Length - 1,
Post => (for all Idx in 1 .. N == B
and then B (B'First + N) =

(B'First + Idx - 1) = Ch)
B (B'First + N)'0ld;

end Example 09;

This code is not correct. Expr'0ld on potentially unevaluated expression is allowed only
when Expr is a variable.

1.12.10 Example #10

Listing 17: example_10.ads
package Example_10 is

procedure Memset
(B : in out String;

Ch : Character;
N Natural)
with

Pre => N <= B'Length - 1,
(continues on next page)

12 Chapter 1. Subprogram Contracts

10
11
12

Advanced SPARK

(continued from previous page)

Post => (for all Idx in 1 .. N => B (B'First + Idx - 1) = Ch)
and B (B'First + N) = B (B'First + N)'0Old;

end Example 10;

This code is correct. Expr'0ld does not appear anymore in a potentially unevaluated ex-
pression. Another solution would have been to apply '0ld on B or to use pragma Uneval-
uated Use 0f 0ld (Allow).

1.12. Code Examples / Pitfalls 13

Advanced SPARK

14 Chapter 1. Subprogram Contracts

CHAPTER
TWO

TYPE CONTRACTS

2.1 Type Contracts in Ada 2012 and SPARK 2014

» Natural evolution in Ada from previous type constraints

- Scalar range specifies lower and upper bounds

- Record discriminant specifies variants of the same type
* Executable type invariants by Meyer in Eiffel (1988)

- Part of Design by Contract ™

- Type invariant is checked dynamically when an object is created, and when an
exported routine of the class returns

* Ada 2012 / SPARK 2014 support strong and weak invariants
- A strong invariant must hold all the time
- A weak invariant must hold outside of the scope of the type

2.2 Static and Dynamic Predicates

2.2.1 Static Predicate

* Original use case for type predicates in Ada 2012
- Supporting non-contiguous subtypes of enumerations
- Removes the constraint to define enumeration values in an order that allows defin-
ing interesting subtypes
Listing 1: show_static_predicate.ads

package Show Static_Predicate is

type Day is (Monday, Tuesday, Wednesday,
Thursday, Friday, Saturday,
Sunday) ;

subtype Weekend is Day range Saturday .. Sunday;
subtype Day Off is Day with
Static Predicate => Day Off in Wednesday | Weekend;

© ® N o U A W N R

=
o

end Show Static Predicate;

-
[

* Typical use case on scalar types for holes in range

15

Advanced SPARK

- e.g. floats without 0.0
* Types with static predicate are restricted

- Cannot be used for the index of a loop or for array index (but OK for value tested
in case statement)

2.2.2 Dynamic Predicate

* Extension of static predicate for any property
- Property for static predicate must compare value to static expressions

- Property for dynamic predicate can be anything

Listing 2: show_dynamic_predicate.ads

package Show_Dynamic_Predicate is

1

2

3 type Day is (Monday, Tuesday, Wednesday,

4 Thursday, Friday, Saturday,

5 Sunday);

6

7 function Check Is Off In Calendar (D : Day) return Boolean;
8
9

subtype Day Off is Day with
10 Dynamic Predicate => Check Is Off In Calendar (Day O0ff);

12 end Show Dynamic Predicate;

» Various typical use cases on scalar and composite types
- Strings that start atindex 1 (My String'First = 1)

- Upper bound on record component that depends on the discriminant value
(Length <= Capacity)

- Ordering property on array values (Is Sorted (My Array))

2.2.3 Restrictions on Types With Dynamic Predicate

* Types with dynamic predicate are restricted
- Cannot be used for the index of a loop (same as static predicate)
- Cannot be used as array index (same as static predicate)
- Cannot be used for the value tested in a case statement
* No restriction on the property in Ada
- Property can read the value of global variable (e.g. Check Is Off In Calendar)
* what if global variable is updated?
- Property can even have side-effects!
» Stronger restrictions on the property in SPARK
- Property cannot read global variables or have side-effects

- These restrictions make it possible to prove predicates

16 Chapter 2. Type Contracts

© ©® N o U A W N R

e
w N B o

© ©® N o U A W N R

e
= o

Advanced SPARK

2.2.4 Dynamic Checking of Predicates

* Partly similar to other type constraints

- Checked everywhere a range/discriminant check would be issued: assignment,
parameter passing, type conversion, type qualification

- ...but exception Assertion Error is raised in case of violation
- ...but predicates not checked by default, activated with -gnata

» Static predicate does not mean verification at compile time!

Listing 3: show_static_predicate verified_at_runtime.ads

package Show_Static_Predicate_Verified_At_Runtime is

type Day is (Monday, Tuesday, Wednesday,
Thursday, Friday, Saturday,
Sunday);

subtype Weekend is Day range Saturday .. Sunday;
subtype Day Off is Day with
Static Predicate => Day Off in Wednesday | Weekend;

procedure Process Day (This Day : Day);

end Show Static Predicate Verified At Runtime;

Listing 4: show_static_predicate_verified_at_runtime.adb

package body Show_Static_Predicate_Verified_At_Runtime is

procedure Process Day (This Day : Day) is
-- Predicate cannot be verified at compile time
My Day Off : Day Off := This Day;
begin
-- missing implementation
null;
end Process Day;

end Show Static Predicate Verified At Runtime;

* Property should not contain calls to functions of the type
- These functions will check the predicate on entry, leading to an infinite loop

- GNAT compiler warns about such cases

2.2.5 Temporary Violations of the Dynamic Predicate

* Sometimes convenient to locally violate the property

- Inside subprogram, to assign components of a record without an aggregate as-
signment

- Violation even if no run-time check on component assignment
* |diom is to define two types

- First type does not have a predicate

- Second type is a subtype of the first with the predicate

- Conversions between these types at subprogram boundary

2.2. Static and Dynamic Predicates 17

©W @ N U A W N e

10

12
13
14
15

Advanced SPARK

Listing 5: show_temp_violation_dyn_predicate.ads

package Show Temp Violation Dyn Predicate is

type Day is (Monday, Tuesday, Wednesday,
Thursday, Friday, Saturday,
Sunday);

type Raw_Week Schedule is record
Day Off, Day On Duty : Day;
end record;

subtype Week_Schedule is Raw Week Schedule with
Dynamic Predicate =>

Week Schedule.Day 0ff /= Week Schedule.Day On Duty;

end Show Temp Violation Dyn Predicate;

2.

3 Type Invariant

» Corresponds to the weak version of invariants

- Predicates should hold always (only enforced with SPARK proof)

- Type invariants should only hold outside of their defining package

* Type invariant can only be used on private types

- Either on the private declaration

- Or on the completion of the type in the private part of the package (makes more

sense in general, only option in SPARK)

18

Chapter 2. Type Contracts

©W @ N U A W N e

S N e
N o u A W N B O

© @ N o U A W N e

S e e i e
N o U A W N B O

Advanced SPARK

Listing 6: show_type_invariant.ads
package Show Type Invariant is
type Day is (Monday, Tuesday, Wednesday,
Thursday, Friday, Saturday,
Sunday);

type Week Schedule is private;
private

type Week Schedule is record
Day Off, Day On Duty : Day;
end record with
Type Invariant => Day Off /= Day On Duty;
procedure Internal Adjust (WS : in out Week Schedule);

end Show Type Invariant;

2.3.1 Dynamic Checking of Type Invariants

* Checked on outputs of public subprograms of the package

Checked on results of public functions

Checked on (in) out parameters of public subprograms

Checked on variables of the type, or having a part of the type

Exception Assertion Error is raised in case of violation

Not checked by default, activated with -gnata
* No checking on internal subprograms!
- Choice between predicate and type invariants depends on the need for such in-
ternal subprograms without checking
Listing 7: show_type_invariant.ads
package Show Type Invariant is
type Day is (Monday, Tuesday, Wednesday,

Thursday, Friday, Saturday,
Sunday);

type Week Schedule is private;
private

type Week Schedule is record
Day Off, Day On Duty : Day;
end record with
Type Invariant => Day Off /= Day On Duty;
procedure Internal Adjust (WS : in out Week Schedule);

end Show Type Invariant;

2.3. Type Invariant 19

©® N O U A W N R

© @ N U A W N e

=
= o

=
N

Advanced SPARK

Listing 8: show_type_invariant.adb

package body Show_Type_Invariant is

procedure Internal Adjust (WS : in out Week Schedule) is
begin

WS.Day Off := WS.Day On Duty;
end Internal Adjust;

end Show Type Invariant;

2.4 Inheritance of Predicates and Type Invariants

» Derived types inherit the predicates of their parent type
- Similar to other type constraints like bounds

- Allows to structure a hierarchy of subtypes, from least to most constrained

Listing 9: show_predicate_inheritance.ads

package Show Predicate Inheritance is

subtype String_Start_At_1 is String with
Dynamic Predicate => String Start At 1'First = 1;

subtype String_Normalized is String Start At 1 with
Dynamic_Predicate => String Normalized'lLast >= 0;

subtype String_Not_Empty is String Normalized with
Dynamic Predicate => String Not Empty'lLength >= 1;

end Show Predicate Inheritance;
* Type invariants are typically not inherited

- A private type cannot be derived unless it is tagged

- Special aspect Type Invariant'Class preferred for tagged types

2.5 Other Useful Gotchas on Predicates and Type Invari-

ants

* GNAT defines its own aspects Predicate and Invariant
- Predicate is the same as Static Predicate if property allows it
- Otherwise Predicate is the same as Dynamic Predicate
- Invariant is the same as Type Invariant
» Referring to the current object in the property
- The name of the type acts as the current object of that type
- Components of records can be mentioned directly
» Type invariants on protected objects
- Ada/SPARK do not define type invariants on protected objects

20 Chapter 2. Type Contracts

© ©® N o U A W N R

R L N <
N o 0 A W N B O

© ® N o U A W N e

e
= o

Advanced SPARK

- Idiom is to use a record type as unique component of the PO, and use a predicate
for that record type

2.6 Default Initial Condition

* Aspect defined in GNAT to state a property on default initial values of a private type
- Introduced for proof in SPARK
- GNAT introduces a dynamic check when -gnata is used

- Used in the formal containers library to state that containers are initially empty

Listing 10: show_default_init_cond.ads

with Ada.Containers;
package Show_Default_Init_Cond is
type Count_Type is new Ada.Containers.Count Type;

type List (Capacity : Count Type) is private with
Default Initial Condition => Is Empty (List);

function Is Empty (L : List) return Boolean;
private

type List (Capacity : Count Type) is null record;
-- missing implementation...

end Show Default Init Cond;

* Can also be used without a property for SPARK analysis
- No argument specifies that the value is fully default initialized

- Argument null specifies that there is no default initialization

2.7 Code Examples / Pitfalls

2.7.1 Example #1

Listing 11: example_01.ads
package Example_01 is
type Day is (Monday, Tuesday, Wednesday,
Thursday, Friday, Saturday,
Sunday) ;
subtype Weekend is Day range Saturday .. Sunday;
subtype Day_Off is Day range Wednesday | Weekend;

end Example 01;

2.6. Default Initial Condition 21

W L N U A W N e

R e
N = O

© O N o U A W N e

N
N = O

© ® N o U A W N R

Advanced SPARK

This code is not correct. The syntax of range constraints does not allow sets of values. A
predicate should be used instead.

2.7.2 Example #2

Listing 12: example_02.ads
package Example 02 is
type Day is (Monday, Tuesday, Wednesday,
Thursday, Friday, Saturday,
Sunday);
subtype Weekend is Day range Saturday .. Sunday;

subtype Day Off is Weekend with
Static Predicate => Day Off in Wednesday | Weekend;

end Example 02;

This code is not correct. This is accepted by GNAT, but result is not the one expected by
the user. Day Off has the same constraint as Weekend.

2.7.3 Example #3

Listing 13: example_03.ads
package Example_03 is
type Day is (Monday, Tuesday, Wednesday,
Thursday, Friday, Saturday,
Sunday) ;
subtype Weekend is Day range Saturday .. Sunday;

subtype Day Off is Day with
Dynamic Predicate => Day Off in Wednesday | Weekend;

end Example 03;

This code is correct. It is valid to use a Dynamic Predicate where a Static Predicate
would be allowed.

2.7.4 Example #4

Listing 14: week.ads
package Week is
type Day is (Monday, Tuesday, Wednesday,
Thursday, Friday, Saturday,
Sunday) ;
subtype Weekend is Day range Saturday .. Sunday;

subtype Day Off is Day with
(continues on next page)

22 Chapter 2. Type Contracts

11
12

© @ N o U A W N e

T e e
o U A W N B O

© ©® N o U A W N R

I R T e T
S © ® N o U B W N H O

Advanced SPARK

(continued from previous page)
Static Predicate => Day Off in Wednesday | Weekend;

end Week;

Listing 15: example_04.adb

with Week; use Week;
procedure Example 04 is

function Next Day Off (D : Day Off) return Day Off is
begin
case D is
when Wednesday => return Saturday;
when Saturday => return Sunday;
when Sunday => return Wednesday;
end case;
end Next Day Off;

begin
null;
end Example 04;

This code is correct. It is valid to use a type with Static Predicate for the value tested in
a case statement. This is not true for Dynamic_Predicate.

2.7.5 Example #5

Listing 16: example_05.ads
package Example_05 is

type Day is (Monday, Tuesday, Wednesday,
Thursday, Friday, Saturday,
Sunday);

type Week_Schedule is private with
Type Invariant => Valid (Week Schedule);

function Valid (WS : Week Schedule) return Boolean;

private
type Week_Schedule is record
Day Off, Day On Duty : Day;
end record;

function Valid (WS : Week Schedule) return Boolean is
(WS.Day Off /= WS.Day On Duty);

end Example 05;

This code is correct. It is valid in Ada because the type invariant is not checked on entry or
return from Valid. Also, function Valid is visible from the type invariant (special visibility in
contracts). Butitis invalid in SPARK, where private declaration cannot hold a type invariant.
The reason is that the type invariant is assumed in the precondition of public functions for
proof. That would lead to circular reasoning if Valid could be public.

2.7. Code Examples / Pitfalls 23

© @ N o U A W N R

P~ e e i <
© ® N o U A W N B O

© ® N o U A W N e

e e e i
©® N o U A W N B O

Advanced SPARK

2.7.6 Example #6

Listing 17: example_06.ads
package Example 06 is

type Day is (Monday, Tuesday, Wednesday,
Thursday, Friday, Saturday,
Sunday);

type Week_Schedule is private;
private

type Week_Schedule is record
Day Off, Day On Duty : Day;
end record with
Type Invariant => Valid (Week Schedule);

function Valid (WS : Week Schedule) return Boolean is
(WS.Day Off /= WS.Day On Duty);

end Example 06;

This code is correct. This version is valid in both Ada and SPARK.

2.7.7 Example #7

Listing 18: example_07.ads
package Example_07 is

subtype Sorted String is String with
Dynamic Predicate =>
(for all Pos in Sorted String'Range =>
Sorted String (Pos) <= Sorted String (Pos + 1));

subtype Unique_String is String with
Dynamic Predicate =>
(for all Posl, Pos2 in Unique String'Range =>
Unique String (Posl) /= Unique_String (Pos2));

subtype Unique_Sorted_String is String with
Dynamic_Predicate =>
Unique Sorted String in Sorted String and then
Unique Sorted String in Unique String;

end Example 07;

This code is not correct. There are 3 problems in this code:
* there is a run-time error on the array access in Sorted String;
* quantified expression defines only one variable;

* the property in Unique String is true only for the empty string.

24 Chapter 2.

Type Contracts

© @ N o U A W N R

I I T e T e e < T =
B O © ® N o U A& W N ~ O

W @ N U A W N e

[T N B = T S S~ B Y TR
P O © ® W o U A W N = O

Advanced SPARK

2.7.8 Example #8

Listing 19: example_08.ads
package Example 08 is

subtype Sorted_String is String with
Dynamic Predicate =>
(for all Pos in Sorted String'First ..
Sorted String'Last - 1 =>
Sorted String (Pos) <= Sorted String (Pos + 1));

subtype Unique_String is String with
Dynamic Predicate =>
(for all Posl in Unique String'Range =>
(for all Pos2 in Unique String'Range =>
(if Posl /= Pos2 then
Unique String (Posl) /= Unique_String (Pos2))));

subtype Unique_Sorted_String is String with
Dynamic Predicate =>
Unique Sorted String in Sorted String and then
Unique Sorted String in Unique String;
end Example 08;

This code is correct. This is a correct version in Ada. For proving AoRTE in SPARK, one will
need to change slightly the property of Sorted String.

2.7.9 Example #9

Listing 20: example_09.ads

package Example 09 is
type Day is (Monday, Tuesday, Wednesday,
Thursday, Friday, Saturday,
Sunday);

type Week Schedule is private with
Default Initial Condition => Valid (Week Schedule);

function Valid (WS : Week Schedule) return Boolean;
private
type Week_Schedule is record
Day Off, Day On Duty : Day;

end record;

function Valid (WS : Week Schedule) return Boolean is
(WS.Day Off /= WS.Day On Duty);

end Example 09;

This code is not correct. The default initial condition is not satisfied.

2.7. Code Examples / Pitfalls 25

© @ N o U A W N R

N NN R R R R R e H E B e
N B O © ® N o U &~ W N B O

Advanced SPARK

2.7.10 Example #10

Listing 21: example_10.ads
package Example 10 is
type Day is (Monday, Tuesday, Wednesday,

Thursday, Friday, Saturday,
Sunday);

type Week_Schedule is private with
Default Initial Condition => Valid (Week Schedule);

function Valid (WS : Week Schedule) return Boolean;
private
type Week_Schedule is record
Day Off : Day Wednesday;

Day On Duty : Day Friday;
end record;

function Valid (WS : Week Schedule) return Boolean is

(WS.Day Off /= WS.Day On Duty);

end Example 10;

This code is correct. This is a correct version, which can be proved with SPARK.

26

Chapter 2. Type Contracts

CHAPTER
THREE

SYSTEMS PROGRAMMING

3.1 Type Contracts in Ada 2012 and SPARK 2014

3.2 Systems Programming - What is it?

* Bare metal programming

bare board applications (no Operating System)

Operating Systems (ex: Muen separation kernel)

device drivers (ex: Ada Drivers Library)

communication stacks (ex: AdaCore TCP/IP stack)

* Specifics of Systems Programming
- direct access to hardware: registers, memory, etc.
- side-effects (yes!)
- efficiency is paramount (sometimes real-time even)

- hard/impossible to debug

3.3 Systems Programming - How can SPARK help?

* SPARK is a Systems Programming language

- same features as Ada for accessing hardware (representation clauses, address
clauses)

- as efficient as Ada or C
» Side-effects can be modeled in SPARK
- reads and writes to memory-mapped devices are modeled
- concurrent interactions with environment are modeled
* SPARK can help catch problems by static analysis
- correct flows, initialization, concurrent accesses

- absence of run-time errors and preservation of invariants

27

© @ N U A W N R

e e < e
U A W N F O

©® N O U A W N R

Advanced SPARK

3.4 Systems Programming - A trivial example

Listing 1: show_trivial_sys prog.ads

package Show Trivial Sys Prog is
Y : Integer;

-- Y'Address could be replaced by any
-- external address
X : Integer with Volatile,

Address => Y'Address;

procedure Get (Val : out Integer)
with Global => (In_Out => X),
Depends => (Val => X,
X = X);

end Show Trivial Sys Prog;

Listing 2: show_trivial_sys prog.adb
package body Show_Trivial_Sys_Prog is

procedure Get (Val : out Integer) is
begin

Val := X;
end Get;

end Show Trivial Sys Prog;
* Comments:
- X is volatile

- Xis also an output; output X depends on input X

- Xis only read

3.5 Volatile Variables and Volatile Types

* Variables whose reads/writes cannot be optimized away

* |dentified through multiple aspects (or pragmas)

aspect Volatile

but also aspect Atomic
and GNAT aspect Volatile Full Access
all the above aspects can be set on type or object

* Other aspects are useful on volatile variables
- aspect Address to specify location in memory

- aspect Import to skip definition/initialization

type T is new Integer with Volatile;

X : Integer with Atomic, Import, Address => ... ;

28 Chapter 3. Systems Programming

© ® N o U A W N R

e e e e
o U0 A W N B O

© ® N o U A W N R

=R e
N = O

Advanced SPARK

3.6 Flavors of Volatile Variables

3.6.1 Using Async_Readers / Async_Writers

* Boolean aspects describing asynchronous behavior

- Async_Readers if variable may be read asynchronously

- Async Writers if variable may be written asynchronously
» Effect of Async Readers on flow analysis
» Effect of Async Writers on flow analysis & proof

- always initialized, always has an unknown value

Listing 3: volatile_vars.ads
package Volatile Vars is
pragma Elaborate Body;
Ext : array (1 .. 2) of Integer;
X : Integer with Volatile,
Address => Ext (1) 'Address,
Async_Readers;
Y : Integer with Volatile,
Address => Ext (2)'Address,
Async Writers;

procedure Set;
end Volatile Vars;

Listing 4: volatile_vars.adb
package body Volatile Vars is

procedure Set is

u, : constant Integer :=Y;
begin

pragma Assert (U = V);

X = 0;

X :=1;
end Set;

begin
Ext := (others => 0);
end Volatile Vars;

3.6. Flavors of Volatile Variables

29

o v A W N B

© ©® N o U A W N R

I R T e <
S © ® N o U B W N H O

© @ N U A W N R

=
= o

Advanced SPARK

Listing 5: show_volatile_vars.adb

with Volatile Vars;

procedure Show Volatile Vars is
begin

Volatile Vars.Set;
end Show Volatile Vars;

3.6.2 Using Effective_Reads / Effective_Writes

* Boolean aspects distinguishing values & sequences
- Effective Reads if reading the variable has an effect on its value
- Effective Writes if writing the variable has an effect on its value
» Effect of both on proof and flow dependencies

- Final value of variable is seen as a sequence of values it took

Listing 6: volatile_vars.ads

package Volatile Vars is
pragma Elaborate Body;
Ext : array (1 .. 2) of Integer;

X : Integer with Volatile,
Address => Ext (1) 'Address,
Async_Readers,

Effective Writes;

Y : Integer with Volatile,
Address => Ext (2)'Address,
Async Writers,

Effective Reads;

procedure Set with
Depends => (X => Y,
Y =>Y);
end Volatile Vars;

Listing 7: volatile_vars.adb
package body Volatile Vars is
procedure Set is

begin
X =

end Set;
begin

Ext := (others => 0);
end Volatile Vars;

30 Chapter 3. Systems Programming

o v A W N B

© ©® N o U A W N K

L e e
o U A W N =B O

Advanced SPARK

Listing 8: show_volatile_vars.adb

with Volatile Vars;

procedure Show Volatile Vars is
begin

Volatile Vars.Set;
end Show Volatile Vars;

3.6.3 Combinations of Flavors of Volatile Variables

» All four flavors can be set independently
- Default for Volatile/Atomic is all four True
- When some aspects set, all others default to False
* Only half the possible combinations are legal
- Async_Readers and/or Async _Writers is set
- Effective Reads = True forces Async Writers = True
- Effective Writes = True forces Async Readers = True
- sensor: AW=True
- actuator: AR=True
- input port: AW=True, ER=True
- output port: AR=True, EW=True

3.7 Constraints on Volatile Variables

* Volatile variables must be defined at library level

* Expressions (and functions) cannot have side-effects
- read of variable with AW=True must appear alone on rhs of assign
- a function cannot read a variable with ER=True

Listing 9: volatile_vars.ads

package Volatile Vars is
pragma Elaborate Body;
Ext : array (1 .. 4) of Integer;

AR : Integer with Volatile,
Address => Ext (1)'Address,
Async_Readers;

AW : Integer with Volatile,
Address => Ext (2)'Address,
Async Writers;

ER : Integer with Volatile,
Address => Ext (3)'Address,

(continues on next page)

3.7. Constraints on Volatile Variables 31

17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

W W N U A W N e

N N N N NN B B B B B BB e e e
O B W N B O © ® N O U A W N B O

® N o U A W N e

Advanced SPARK

Async Writers,
Effective Reads;

EW : Integer with Volatile,
Address => Ext (4)'Address,
Async_Readers,

Effective Writes;
procedure Read All;
function Read ER return Integer;

procedure Set (V : Integer);

end Volatile Vars;

Listing 10: volatile_vars.adb

package body Volatile Vars is

procedure Read All is
Tmp : Integer := 0;

begin
Tmp := Tmp + AR;
Tmp := Tmp + AW;
EW := Tmp;
Set (ER);

end Read All;

function Read ER return Integer is
Tmp : Integer := ER;

begin
return Tmp;

end Read ER;

procedure Set (V : Integer) is
begin

AW :=V;
end Set;

begin
Ext := (others => 0);
end Volatile Vars;

Listing 11: show_volatile_vars.adb

with Volatile Vars;

procedure Show Volatile Vars is
V : Integer;
begin
Volatile Vars.Read All;
V := Volatile Vars.Read ER;
end Show Volatile Vars;

e Comments:
- AW not alone on rhs

- ER not alone on rhs
- ER output of Read_ER

(continued from previous page)

32 Chapter 3.

Systems Programming

© ©® N o U A W N R

W oW oW W W Ww W NN NNNNNNNWNHKRERR B B B B B B B
o 00 A W N P O © ® N O U & W N B O W ® N o 0 o W N B O

© ® N o U A W N R

Boe e
N = O

Advanced SPARK

3.8 Constraints on Volatile Functions

* Functions should have mathematical interpretation

- a function reading a variable with AW=True is marked as volatile with aspect
Volatile Function

- calls to volatile functions are restricted like reads of Async Writers

Listing 12: volatile_vars.ads

package Volatile Vars is
pragma Elaborate Body;
Ext : array (1 .. 4) of Integer;

AR : Integer with Volatile,
Address => Ext (1)'Address,
Async_Readers;

AW : Integer with Volatile,
Address => Ext (2)'Address,
Async Writers;

ER : Integer with Volatile,
Address => Ext (3)'Address,
Async Writers,

Effective Reads;

EW : Integer with Volatile,
Address => Ext (4)'Address,
Async_Readers,

Effective Writes;

function Read Non Volatile
return Integer;

function Read Volatile
return Integer
with Volatile Function;

function Read ER
return Integer
with Volatile Function;

end Volatile Vars;

Listing 13: volatile_vars.adb
package body Volatile Vars is
function Read Non Volatile

return Integer is
Tmp : Integer := 0;

begin
-- reads AR, AW, EW
-- ERROR: not a volatile function
Tmp := Tmp + AR;
Tmp := Tmp + AW;
Tmp := Tmp + EW;

(continues on next page)

3.8. Constraints on Volatile Functions 33

13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

37
38
39
40

© ©® N o U A W N R

N o U A W N e

Advanced SPARK

(continued from previous page)

return Tmp;
end Read Non Volatile;

function Read Volatile
return Integer is
Tmp : Integer := 0;
begin
-- reads AR, AW, EW
-- 0K for volatile function
Tmp Tmp + AR;
Tmp Tmp + AW;
Tmp := Tmp + EW;

return Tmp;
end Read Volatile;

function Read ER
return Integer is
Tmp : Integer := ER;
begin
-- reads ER
-- ERROR: ER output of Read ER
return Tmp;
end Read ER;

begin

Ext := (others => 0);
end Volatile Vars;

Listing 14: show_volatile_vars.adb

with Volatile Vars;

procedure Show Volatile Vars is

V : Integer;
begin
V := Volatile Vars.Read Non Volatile;
V := Volatile Vars.Read Volatile;
V := Volatile Vars.Read ER;

end Show Volatile Vars;

3.9 State Abstraction on Volatile Variables

» Abstract state needs to be identified as External
* Flavors of volatility can be specified

- Default if none specified is all True

Listing 15: pl.ads

package Pl with
Abstract_State => (S with External)
is
procedure Process (Data : out Integer) with
Global => (In Qut => S);

end P1;

34 Chapter 3. Systems Programming

© ©® N o U A W N R

=R e
N = O

© ©® N o U A W N K

=
= o

Advanced SPARK

Listing 16: p2.ads

package P2 with
Abstract_State => (S with External =>
(Async Writers,
-- OK if refined into AW, ER
Effective Reads)
-- not OK if refined into AR, EW
)

is
procedure Process (Data : out Integer) with
Global => (In Qut => S);

end P2;

3.10 Constraints on Address Attribute

* Address of volatile variable can be specified
Listing 17: show_address_attribute.ads
package Show_Address_Attribute is
Ext : array (1 .. 2) of Integer;

X : Integer with Volatile,
Address => Ext (1)'Address;

Y : Integer with Volatile;
for Y'Address use Ext (2)'Address;

end Show Address Attribute;

* Address attribute not allowed in expressions
* Overlays are allowed
- GNATprove does not check absence of overlays

- GNATprove does not model the resulting aliasing

3.10. Constraints on Address Attribute 35

©W @ N U A W N e

R e
N = O

N o U A W N R

Advanced SPARK

Listing 18: show_address_overlay.adb
procedure Show Address Overlay is
X : Integer := 1;

Y : Integer := 0
with Address => X'Address;

pragma Assert (X = 1);

-- assertion wrongly proved
begin

null;

end Show Address Overlay;

3.11 Can something be known of volatile variables?

Variables with Async_Writers have no known value

e ... but they have a known type!

- typerange, ex: 0 .. 360

- type predicate,ex: 0 .. 15 | 17 .. 42 | 43 .. 360

* Variables without Async_Writers have a known value

GNATprove also assumes all values are valid (X'Valid)

Listing 19: show_provable_volatile_var.ads

package Show_Provable_Volatile_Var is
X : Integer with Volatile, Async Readers;
procedure Read Value;

end Show Provable Volatile Var;

36 Chapter 3. Systems Programming

© ©® N o U A W N R

=
o

W @ N U A W N e

R e
N = O

Advanced SPARK

Listing 20: show_provable_volatile_var.adb
package body Show_Provable_Volatile Var is

procedure Read Value is

begin
X 1= 42;
pragma Assert (X = 42);

-- proved!
end Read Value;

end Show Provable Volatile Var;

3.12 Other Concerns in Systems Programming

* Software startup state — elaboration rules
- SPARK follows Ada static elaboration model
- ... with additional constraints for ensuring correct initialization
- ... but GNATprove follows the relaxed GNAT static elaboration
* Handling of faults — exception handling
- raising exceptions is allowed in SPARK
- ... but exception handlers are SPARK Mode => Off
- ... typically the last-chance-handler is used instead
* Concurrency inside the application — tasking support

- Ravenscar and Extended_Ravenscar profiles supported in SPARK

3.13 Code Examples / Pitfalls

3.13.1 Example #1

Listing 21: example_01.ads
package Example 01 is

Ext : Integer;

X : Integer with Volatile,
Address => Ext'Address;

procedure Get (Val : out Integer)
with Global => (Input => X),
Depends => (Val => X);

end Example 01;

3.12. Other Concerns in Systems Programming

37

© N O U A W N

© @ N o U A W N e

R
N B O

©® N O U A W N R

© ® N o U A W N e

Advanced SPARK

Listing 22: example_01l.adb

package body Example 01 is
procedure Get (Val : out Integer) is
begin

Val := X;
end Get;

end Example 01;

This code is not correct. X has Effective Reads set by default, hence it is also an output.

3.13.2 Example #2

Listing 23: example_02.ads
package Example 02 is

Ext : Integer;

X : Integer with Volatile, Address => Ext'Address,
Async_Readers, Async Writers, Effective Writes;

procedure Get (Val : out Integer)
with Global => (Input => X),
Depends => (Val => X);

end Example 02;

Listing 24: example_02.adb

package body Example_ 02 is
procedure Get (Val : out Integer) is
begin

Val := X;
end Get;

end Example 02;

This code is correct. X has Effective Reads = False, hence it is only an input.

3.13.3 Example #3

Listing 25: example_03.ads
package Example_03 is

Speed : Float with Volatile, Async Writers;
Motor : Float with Volatile, Async Readers;

procedure Adjust with
Depends => (Motor =>+ Speed);

end Example 03;

38 Chapter 3.

Systems Programming

© ©® N o U A W N R

e
= o

© ® N o U A W N R

e
= o

© ©® N o U A W N R

=R e
N P O

Advanced SPARK

Listing 26: example_03.adb
package body Example 03 is

procedure Adjust is
: constant Float := Speed;
begin
if abs (Cur Speed) > 100.0 then
Motor := Motor - 1.0;
end if;
end Adjust;

end Example 03;

This code is correct. Speed is an input only, Motor is both an input and output. Note how
the current value of Speed is first copied to be tested in a larger expression.

3.13.4 Example #4

Listing 27: example_04.ads

package Example_04 is
Raw Data : Float with Volatile,
Async Writers, Effective Reads;
Data : Float with Volatile,
Async_Readers, Effective Writes;

procedure Smooth with
Depends => (Data => Raw Data);

end Example 04;

Listing 28: example_04.adb
package body Example_04 is

procedure Smooth is

: constant Float := Raw Data;
: constant Float := Raw Data;
begin
Data := Datal;
Data := (Datal + Data2) / 2.0;
Data := Data2;
end Smooth;

end Example 04;

This code is not correct. Raw_Data has Effective Reads set, hence it is also an output.

3.13. Code Examples / Pitfalls 39

Advanced SPARK

3.13.5 Example #5

Listing 29: example_05.ads

1 package Example 05 is

2

3 type Regval is new Integer with Volatile;

4 type Regnum is range 1 .. 32;

5 type Registers is array (Regnum) of Regval;

6

7 Regs : Registers with Async Writers, Async Readers;
8

9 function Reg (R : Regnum) return Integer is

10 (Integer (Regs (R))) with Volatile Function;

11

12 end Example 05;

This code is not correct. Regs has Async _Writers set, hence it cannot appear as the ex-
pression in an expression function.

3.13.6 Example #6

Listing 30: example_06.ads

package Example 06 is
type Regval is new Integer with Volatile;
type Regnum is range 1 .. 32;
type Registers is array (Regnum) of Regval;

Regs : Registers with Async Writers, Async Readers;

W @ N U A W N e

function Reg (R : Regnum) return Integer
with Volatile Function;

=
= o

12 end Example 06;

40 Chapter 3. Systems Programming

© ©® N o U A W N R

© ©® N o U A W N R

=R e
N P O

©® N O U A W N R

Advanced SPARK

Listing 31: example_06.adb
package body Example 06 is

function Reg (R : Regnum) return Integer is
V : Regval := Regs (R);

begin
return Integer (V);

end Reg;

end Example 06;

This code is not correct. Regval is a volatile type, hence variable V is volatile and cannot
be declared locally.

3.13.7 Example #7

Listing 32: example_07.ads
package Example_07 is

type Regval is new Integer with Volatile;
type Regnum is range 1 .. 32;
type Registers is array (Regnum) of Regval;

Regs : Registers with Async Writers, Async_Readers;

function Reg (R : Regnum) return Integer
with Volatile Function;

end Example 07;

Listing 33: example_07.adb
package body Example 07 is

function Reg (R : Regnum) return Integer is
begin

return Integer (Regs (R));
end Reg;

end Example 07;

This code is correct. Regs has Effective Reads = False hence can be read in a function.
Function Reg is marked as volatile with aspect Volatile Function. No volatile variable is
declared locally.

3.13. Code Examples / Pitfalls 41

o U A W N K

© ©® N o U A W N R

e
w N B o

W @ N U A W N e

i <
> W N B O

o U A W N B

Advanced SPARK

3.13.8 Example #8

Listing 34: example_08.ads

package Example 08 with
Abstract_State => (State with External),
Initializes => State
is
procedure Dummy;
end Example 08;

Listing 35: example_08.adb

package body Example_08 with
Refined_State => (State => (X, Y, Z))

is
X : Integer with Volatile, Async Readers;
Y : Integer with Volatile, Async Writers;
Z : Integer := 0;

procedure Dummy is
begin

null;
end Dummy;

end Example 08;

This code is not correct. X has Async Writers = False, hence is not considered as always
initialized. As aspect Initializes specifies that State should be initialized after elabora-
tion, this is an error. Note that is allowed to bundle volatile and non-volatile variables in an
external abstract state.

3.13.9 Example #9

Listing 36: example_09.ads
package Example 09 is

type Pair is record
U, V : Natural;
end record
with Predicate => U /= V;

X : Pair with Atomic, Async_Readers, Async Writers;

function Max return Integer with
Volatile Function,
Post => Max'Result /= 0;

end Example 09;

Listing 37: example_09.adb
package body Example 09 is

function Max return Integer is
: constant Natural := X.U;
: constant Natural := X.V;
begin
(continues on next page)

42 Chapter 3. Systems Programming

10

© @ N U A W N e

i <
A w N B O

© O N U A W N e

e
= o

Advanced SPARK

return Natural'Max (Vall, Val2);
end Max;

end Example 09;

This code is not correct. X has Async_Writers set, hence it may have been written between

the successive reads of X.U and X.V.

3.13.10 Example #10

Listing 38: example_10.ads
package Example 10 is

type Pair is record
U, V : Natural;
end record
with Predicate => U /= V;

X : Pair with Atomic, Async Readers, Async Writers;
function Max return Integer with
Volatile Function,

Post => Max'Result /= 0;

end Example 10;

Listing 39: example_10.adb
package body Example 10 is

function Max return Integer is
: constant Pair := X;

: constant Natural := P.U;
: constant Natural := P.V;
begin
return Natural'Max (Vall, Val2);
end Max;

end Example 10;

This code is correct. Values of P.U and P.V are provably different, and the postcondition is

proved.

(continued from previous page)

3.13. Code Examples / Pitfalls

Advanced SPARK

a4 Chapter 3. Systems Programming

CHAPTER
FOUR

CONCURRENCY

4.1 Concurrency % Parallelism

* Concurrency allows to create a well structured program

Parallelism allows to create a high performance program

Multiple cores/processors are...
- possible for concurrent programs
- essential to parallelism

What about Ada and SPARK?

- GNAT runtimes for concurrency available on single core & multicore (for SMP plat-
forms)

- parallel features scheduled for inclusion in Ada and SPARK 202x

4.2 Concurrent Program Structure in Ada

Shared Object/

Resource

Tasks 1 and 2 access a
shared resource

Stack

Stack

Task 3 signals an event
Stack to Task 2

45

Advanced SPARK

4.3 The problems with concurrency

Control and data flow become much more complex
- possibly nondeterministic even
- actual behavior is one of many possible interleavings of tasks
* Data may be corrupted by concurrent accesses
- so called data races or race conditions
* Control may block indefinitely, or loop indefinitely
- so called deadlocks and livelocks

* Scheduling and memory usage are harder to compute

4.4 Ravenscar - the Ada solution to concurrency prob-
lems

* Ravenscar profile restricts concurrency in Ada

ensures deterministic behavior at every point in time

recommends use of protected objects to avoid data races

prevents deadlocks with Priority Ceiling Protocol

allows use of scheduling analysis techniques (RMA, RTA)

facilitates computation of memory usage with static tasks
* GNAT Extended Ravenscar profile lifts some restrictions
- still same benefits as Ravenscar profile

- removes painful restrictions for some applications

46 Chapter 4. Concurrency

© ©® N o U A W N K

Advanced SPARK

4.5 Concurrent Program Structure in Ravenscar

Shared Object/

Resource

Tasks 1 and 2 access a
shared resource

Stack

No direct task to task
communication

Stack

4.6 Ravenscar - the SPARK solution to concurrency prob-

lems

* Ravenscar and Extended_Ravenscar profiles supported in SPARK

* Data races prevented by flow analysis

- ensures no problematic concurrent access to unprotected data

- flow analysis also ensures non-termination of tasks

* Run-time errors prevented by proof

- includes violations of the Priority Ceiling Protocol

4.7 Concurrency - A trivial example

Listing 1: show trivial_task.ads

package Show_Trivial Task is
type Task_Id is new Integer;
task type T (Id : Task Id);
TL : T (0);

T2 : T (1);
end Show Trivial Task;

4.5. Concurrent Program Structure in Ravenscar a7

© ©® N o U A W N R

Advanced SPARK

Listing 2: show_trivial task.adb

package body Show_Trivial Task is
task body T is
Current Task : Task Id := Id;
begin
Lloop
delay 1.0;
end loop;
end T;
end Show Trivial Task;

* |d can be written by T1 and T2 at the same time

4.8 Setup for using concurrency in SPARK

* Any unit using concurrency features (tasks, protected objects, etc.) must set the pro-
file

pragma Profile (Ravenscar);
-- or
pragma Profile (GNAT Extended Ravenscar);

e ... plus an additional pragma
- that ensures tasks start after the end of elaboration

pragma Partition Elaboration Policy (Sequential);

* ... which are checked by GNAT partition-wide

- pragmas needed for verification even it not for compilation

4.9 Tasks in Ravenscar

* A task can be either a singleton object or a type

- no declarations of entries for rendez-vous

task T;
task type TT;
e ... completed by a body

- infinite loop to prevent termination
task body T is

begin
loop

end loop;
end T;

* Tasks are declared at library-level
* ... as standalone objects or inside records/arrays

48 Chapter 4. Concurrency

© N U A W N e

-
o

©W @ N U A W N e

=R e
N = O

1
2
3

Advanced SPARK

type TA is array (1 .. 3) of TT;
type TR is record

A, B : TT;
end record;

4.10 Communication Between Tasks in Ravenscar

* Tasks can communicate through protected objects
* A protected object is either a singleton object or a type
- all PO private data initialized by default in SPARK

Listing 3: show_protected object.ads
package Show Protected Object is
protected P is
procedure Set (V : Natural);
function Get return Natural;
private

The Data : Natural := 0;
end P;

end Show Protected Object;

Listing 4: show_protected object.adb
package body Show Protected Object is

protected body P is
procedure Set (V : Natural) is

begin
The Data := V;
end Set;
function Get return Natural is
(The Data);
end P;

end Show Protected Object;

4.11 Protected Objects in Ravenscar

* Protected objects are declared at library-level
e ... as standalone objects or inside records/arrays

- The record type needs to be volatile, as a non-volatile type cannot contain a
volatile component. The array type is implicitly volatile when its component type
is volatile.

Listing 5: show_protected_object ravenscar.ads

package Show Protected_Object_Ravenscar is

protected type PT is
(continues on next page)

4.10. Communication Between Tasks in Ravenscar 49

© ©® N o U A

11
12
13
14
15
16
17
18
19
20

© ©® N o U A W N K

=R e
N P O

Advanced SPARK

(continued from previous page)

procedure Set (V : Natural);
function Get return Natural;
private
The Data : Natural := 0;
end PT;

P : PT;

type PAT is array (1 .. 3) of PT;
PA : PAT;

type PRT is record

A, B : PT;
end record with Volatile;
PR : PRT;

end Show Protected Object Ravenscar;

Listing 6: show_protected_object ravenscar.adb

package body Show_Protected_Object_Ravenscar is

protected body PT is
procedure Set (V : Natural) is

begin
The Data := V;
end Set;
function Get return Natural is
(The Data);
end PT;

end Show Protected Object Ravenscar;

4.12 Protected Communication with Procedures & Func-

tions

* CREW enforced (Concurrent-Read-Exclusive-Write)

- procedures have exclusive read-write access to PO

- functions have shared read-only access to PO
* Actual mechanism depends on target platform

- scheduler enforces policy on single core

- locks used on multicore (using CAS instructions)

- lock-free transactions used for simple PO (again using CAS)
* Mechanism is transparent to user

- user code simply calls procedures/functions

- task may be queued until PO is released by another task

50 Chapter 4.

Concurrency

© ® N o U A W N e

=
o

© O N U A W N e

=
o

N o U A W N e

Advanced SPARK

4.13 Blocking Communication with Entries

* Only protected objects have entries in Ravenscar

* Entry = procedure with entry guard condition
- second level of queues, one for each entry, on a given PO
- task may be queued until guard is True and PO is released
- at most one entry in Ravenscar

- guard is a Boolean component of PO in Ravenscar

Listing 7: show_blocking_communication.ads

package Show Blocking_Communication is

protected type PT is
entry Reset;

private
Is Not Null : Boolean := False;
The Data : Integer := 1000;
end PT;

end Show Blocking Communication;

Listing 8: show_blocking_communication.adb

package body Show_Blocking_Communication is

protected body PT is
entry Reset when Is Not Null is
begin
The Data := 0;
end Reset;
end PT;

end Show Blocking Communication;

4.14 Relaxed Constraints on Entries with
Ravenscar

* Proof limitations with Ravenscar
- not possible to relate guard to other components with invariant
* GNAT Extended Ravenscar profile lifts these constraints

- and allows multiple tasks to call the same entry

Listing 9: show_relaxed_constraints_on_entries.ads

package Show Relaxed Constraints On Entries is

protected type Mailbox is
entry Publish;
entry Retrieve;

private
Num_ Messages : Natural := 0;

Extended

(continues on next page)

4.13. Blocking Communication with Entries

51

10

© @ N U A W N e

S N e
N o U A W N B O

© ©® N o U A W N R

T <
A W N = O

Advanced SPARK

(continued from previous page)
end Mailbox;

end Show Relaxed Constraints On Entries;

Listing 10: show_relaxed_constraints_on_entries.adb

package body Show Relaxed Constraints On _Entries is
: constant := 100;

protected body Mailbox is
entry Publish when Num Messages < Max is
begin
Num Messages := Num Messages + 1;
end Publish;

entry Retrieve when Num Messages > 0 is
begin
Num_Messages := Num Messages - 1;
end Retrieve;
end Mailbox;

end Show Relaxed Constraints On Entries;

4.15 Interrupt Handlers in Ravenscar

* Interrupt handlers are parameterless procedures of PO
- with aspect Attach Handler specifying the corresponding signal

- with aspect Interrupt Priority on the PO specifying the priority

Listing 11: show_interrupt_handlers.ads

with System; use System;
with Ada.Interrupts.Names; use Ada.Interrupts.Names;

package Show_Interrupt_Handlers is

protected P with
Interrupt Priority =>
System.Interrupt Priority'First
is
procedure Signal with
Attach Handler => SIGHUP;
end P;

end Show Interrupt Handlers;
* Priority of the PO should be in System.Interrupt Priority

- default is OK - in the range of System.Interrupt Priority
- checked by proof (default or value of Priority or Interrupt Priority)

52 Chapter 4. Concurrency

W N U A W N e

e e
w N P o

A W N R

Advanced SPARK

4.16 Other Communications Between Tasks in SPARK

* Tasks must communicate through synchronized objects

- atomic objects

- protected objects

- suspension objects (standard Boolean protected objects)
* Constants are considered as synchronized

- this includes variables constant after elaboration (specified with aspect Con-
stant After Elaboration)

* Single task or PO can access an unsynchronized object

- exclusive relation between object and task/PO must be specified with aspect
Part Of

4.17 Data and Flow Dependencies of Tasks

* Input/output relation can be specified for a task
- as task never terminates, output is understood while task runs
- task itself is both an input and an output
- implicit In Out => T

- explicit dependency

Listing 12: show_data_and_flow_dependencies.ads

package Show Data And Flow Dependencies is
X, Y, Z : Integer;

task T with

Global => (Input => X,
Output =>Y,
In Out == 7),

Depends => (T =T,

Z = X,

Y = X,

null => 7);

end Show Data And Flow Dependencies;

4.18 State Abstraction over Synchronized Variables

* Synchronized objects can be abstracted in synchronized abstract state with aspect
Synchronous

Listing 13: show_state abstraction.ads

package Show State Abstraction with
Abstract_State => (State with Synchronous, External)
is

(continues on next page)

4.16. Other Communications Between Tasks in SPARK 53

© @ N o u

10
11
12
13

W N U A W N e

[T T = T S R~ B S TR S
P O © ® N o U A W N = O

Advanced SPARK

(continued from previous page)
protected type Protected_Type is
procedure Reset;
private
Data : Natural := 0;
end Protected Type;

task type Task_Type;

end Show State Abstraction;

Listing 14: show_state_abstraction.adb

package body Show State Abstraction with
Refined_State => (State => (A, P, T))
is
A : Integer with Atomic, Async Readers, Async Writers;
P : Protected Type;
T : Task Type;

protected body Protected Type is
procedure Reset is
begin
Data := 0;
end Reset;
end Protected Type;

task body Task Type is

begin
P.Reset;
A :=0;

end Task Type;

end Show State Abstraction;

* Synchronized state is a form of external state
- Synchronous same as External => (Async_Readers, Async Writers)

- tasks are not volatile and can be part of regular abstract state

4.19 Synchronized Abstract State in the Standard Li-
brary

» Standard library maintains synchronized state
- the tasking runtime maintains state about running tasks
- the real-time runtime maintains state about current time

package Ada.Task Identification with
SPARK_Mode,
Abstract_State =>
(Tasking State with Synchronous,
External => (Async_Readers, Async Writers)),
Initializes => Tasking_State

package Ada.Real Time with
SPARK_Mode,
Abstract_State =>
(continues on next page)

54 Chapter 4. Concurrency

© ©® N o U A W N K

e
w N = o

© ©® N o U A W N R

Advanced SPARK

(continued from previous page)

(Clock Time with Synchronous,
External => (Async_Readers, Async Writers)),
Initializes => Clock Time

* API of these units refer to Tasking State and Clock Time

4.20 Code Examples / Pitfalls

4.20.1 Example #1

procedure Rendezvous is
task T1 is
entry Start;
end T1;

task body T1 is
begin

accept Start;
end T1;

begin
T1l.Start;
end Rendezvous;

This code is not correct.
tion Max Task Entries
No Task Hierarchy

4.20.2 Example #2

package Example_02 is
protected P is
entry Reset;
end P;
private

Data : Boolean := False;
end Example 02;

package body Example 02 is

protected body P is

Listing 15: rendezvous.adb

Task rendezvous is not allowed; violation of restric-
0. A local task is not allowed; violation of restriction

Listing 16: example_02.ads

Listing 17: example_02.adb

entry Reset when Data is

begin
null;
end Reset;
end P;

(continues on next page)

4.20. Code Examples / Pitfalls 55

10

© O N U A W N e

=R e
N = O

© @ N o U A W N R

I I T s T e o < =
P O © ® N o U A W N ~ O

Advanced SPARK

(continued from previous page)
end Example 02;

This code is not correct. Global data in entry guard is not allowed. Violation of restriction
Simple Barriers (for Ravenscar) or Pure Barriers (for Extended Ravenscar)

4.20.3 Example #3

Listing 18: example_03.ads
package Example_03 is

protected P is
procedure Set (Value : Integer);
end P;

private
task type TT;

T, T2 : TT;

end Example 03;

Listing 19: example_03.adb
package body Example 03 is

Data : Integer := 0;

protected body P is
procedure Set (Value : Integer) is
begin
Data := Value;
end Set;
end P;

task body TT is
Local : Integer := 0;

begin
Lloop
Local := (Local + 1) mod 100;
P.Set (Local);
end loop;
end TT;

end Example 03;

This code is not correct. Global unprotected data accessed in protected object shared be-
tween tasks

56 Chapter 4. Concurrency

© @ N o U A W N R

e e
2 W N = O

© N U A W N R

P~ e L O e < =
© ©® N o U A W N = O

© ©® N o U A W N K

=
= o

Advanced SPARK

4.20.4 Example #4

Listing 20: example_04.ads

package Example 04 is
protected P is
procedure Set (Value : Integer);
end P;

private

Data : Integer := 0 with Part 0f => P;

task type TT;
T1l, T2 : TT;

end Example 04;

Listing 21: example_04.adb

package body Example 04 is

protected body P is

procedure Set (Value : Integer) is

begin
Data := Value;
end Set;
end P;

task body TT is
Local : Integer := 0;
begin
loop
Local := (Local + 1) mod 100;
P.Set (Local);
end loop;
end TT;

end Example 04;

This code is correct. Data is part of the protected object state. The only accesses to Data

are through P.

4.20.5 Example #5

Listing 22: example_05.ads

package Example_05 is

protected P1 with Priority => 3 is
procedure Set (Value : Integer);
private
Data : Integer := 0;
end P1;

protected P2 with Priority => 2 is
procedure Set (Value : Integer);
end P2;

(continues on next page)

4.20. Code Examples / Pitfalls

57

12
13
14
15
16
17
18

© ® N o U A W N R

NONONNNN B H O HE B R el e
g B W N B O L ® N O U A W N B O

W @ N U A W N e

N
N = O

Advanced SPARK

(continued from previous page)

private
task type TT with Priority => 1;

T1l, T2 : TT;

end Example 05;

Listing 23: example_05.adb
package body Example 05 is

protected body P1 is
procedure Set (Value : Integer) is
begin
Data := Value;
end Set;
end P1;

protected body P2 is
procedure Set (Value : Integer) is
begin
P1.Set (Value);
end Set;
end P2;

task body TT is
: constant Integer := 0;
begin
Lloop
P2.Set (Local);
end loop;
end TT;

end Example 05;

This code is correct. Ceiling Priority policy is respected. Task never accesses a pro-
tected object with lower priority than its active priority. Note that PO can call procedure or
function from another PO, but not an entry (possibly blocking).

4.20.6 Example #6

Listing 24: example_06.ads
package Example 06 is
protected type Mailbox is

entry Publish;
entry Retrieve;

private
Not Empty : Boolean := True;
Not Full : Boolean := False;
Num_Messages : Natural := 0;

end Mailbox;

end Example 06;

58 Chapter 4. Concurrency

© ©® N o U A W N R

NONONNNN B B H B R el e e
U B W N P O L ® N O 0 A W N B O

© @ N o U A W N R

=
o

© @ N o U A W N e

R
N B O

Advanced SPARK

Listing 25: example_06.adb
package body Example 06 is

: constant := 100;

protected body Mailbox is
entry Publish when Not Full is
begin
Num Messages := Num Messages + 1;
Not Empty := True;
if Num Messages = Max then
Not Full := False;
end if;
end Publish;

entry Retrieve when Not Empty is
begin
Num Messages := Num Messages - 1;
Not Full := True;
if Num Messages = 0 then
Not Empty := False;
end if;
end Retrieve;
end Mailbox;

end Example 06;

This code is not correct. Integer range cannot be proved correct.

4.20.7 Example #7

Listing 26: example_07.ads
package Example 07 is

protected type Mailbox is
entry Publish;
entry Retrieve;
private
Num_Messages : Natural := 0;
end Mailbox;

end Example 07;

Listing 27: example_07.adb
package body Example 07 is

: constant := 100;

protected body Mailbox is
entry Publish when Num Messages < Max is
begin
Num Messages := Num Messages + 1;
end Publish;

entry Retrieve when Num Messages > 0 is
begin
(continues on next page)

4.20. Code Examples / Pitfalls 59

13
14
15
16
17

© ©® N o U A W N K

I N i s T e O i < =
B O © ® N o U B W N F O

© ® N o U A W N R

NONONN B R R B E e B s e
W N B O © ® N & 00 & W N B O

Advanced SPARK

Num Messages := Num Messages - 1;
end Retrieve;
end Mailbox;

end Example 07;

(continued from previous page)

This code is correct. Precise range obtained from entry guards allows to prove checks.

4.20.8 Example #8

Listing 28: example_08.ads
package Example_08 is

: constant := 100;

type Content is record

Not Empty : Boolean := False;
Not Full : Boolean := True;
Num_Messages : Natural := 0;

end record with Predicate =
Num Messages in 0 .. Max

and Not Empty = (Num Messages > 0)
and Not Full = (Num Messages < Max);

protected type Mailbox is
entry Publish;
entry Retrieve;
private
C : Content;
end Mailbox;

end Example 08;

Listing 29: example_08.adb
package body Example 08 is

protected body Mailbox is
entry Publish when C.Not Full is

Not Full : Boolean := C.Not Full;

Num Messages : Natural := C.Num Messages;
begin

Num Messages := Num Messages + 1;

if Num Messages = Max then
Not Full := False;
end if;
C := (True, Not Full, Num Messages);
end Publish;

entry Retrieve when C.Not Empty is

Not Empty : Boolean := C.Not Empty;

Num_Messages : Natural := C.Num_Messages;
begin

Num Messages := Num Messages - 1;

if Num Messages = 0 then
Not Empty := False;
end if;
C := (Not Empty, True, Num Messages);

(continues on next page)

60

Chapter 4. Concurrency

24

26
27

© @ N U A W N e

T e N e i
©® N o U A W N KB O

© ©® N o U A W N R

NN NN NN B B H B R e Bl e e
U 2 W N P O © ® N O 00 A W N = O

Advanced SPARK

end Retrieve;
end Mailbox;

end Example 08;

(continued from previous page)

This code is correct. Precise range obtained from predicate allows to prove checks. Predi-

cate is preserved.

4.20.9 Example #9

Listing 30: example_09.ads

--% src _file: Example 09.ads
--% cflags: -gnaty

[}

--% make flags: -gnaty -gnata
package Example_09 is

package Service with
Abstract_State => (State with External)
is
procedure Extract (Data : out Integer) with
Global => (In Out => State);
end Service;

private
task type T;
T, T2 : T;

end Example 09;

Listing 31: example_09.adb
package body Example 09 is

package body Service with
Refined_State => (State => Extracted)
is
: constant Integer := 100;
Extracted : Boolean := False;
procedure Extract (Data : out Integer) is
begin
if not Extracted then
Data := Local Data;
Extracted := True;
else
Data := Integer'First;
end if;
end Extract;
end Service;

task body T is
X : Integer;
begin
loop
Service.Extract (X);
end loop;

(continues on next page)

4.20. Code Examples / Pitfalls

61

26
27
28

© ©® N o U A W N R

N N i e e O o < =
B O © ® N o U B W N H O

© O N o U A W N e

N ONONN B R R B HE e B e e
W N B O © ® N O 0 & W N B O

Advanced SPARK

(continued from previous page)
end T;

end Example 09;

This code is not correct. Unsynchronized state cannot be accessed from multiple tasks or
protected objects.

4.20.10 Example #10

Listing 32: example_10.ads

package Example_10 is
package Service with
Abstract_State => (State with Synchronous, External)
is
procedure Extract (Data : out Integer) with
Global => (In Out => State);
private
protected type Service_ Extracted is
procedure Set;
function Get return Boolean;
private
Extracted : Boolean := False;
end Service Extracted;
end Service;
private
task type T;
T1, T2 : T;

end Example 10;

Listing 33: example_10.adb
package body Example 10 is

package body Service with
Refined_State => (State => Extracted)
is
: constant Integer := 100;

Extracted : Service Extracted;

protected body Service Extracted is
procedure Set is
begin
Extracted := True;
end Set;

function Get return Boolean is
(Extracted);
end Service Extracted;

procedure Extract (Data : out Integer) is
constant Boolean := Extracted.Get;
begin
if not Is Extracted then
(continues on next page)

62 Chapter 4. Concurrency

24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40

Advanced SPARK

Data := Local Data;
Extracted.Set;
else
Data := Integer'First;
end if;
end Extract;
end Service;

task body T is
X : Integer;
begin
loop
Service.Extract (X);
end loop;
end T;

end Example 10;

(continued from previous page)

This code is correct. Abstract state is synchronized, hence can be accessed from multiple

tasks and protected objects.

4.20. Code Examples / Pitfalls

63

Advanced SPARK

64 Chapter 4. Concurrency

CHAPTER
FIVE

OBJECT-ORIENTED PROGRAMMING

5.1 What is Object Oriented Programming?

Object-oriented software construction is the building of software systems as struc-
tured collections of [...] abstract data type implementations.

Bertrand Meyer, “Object Oriented Software Construction”
* Object Oriented Programming is about:
- isolating clients from implementation details (abstraction)
- isolating clients from the choice of data types (dynamic dispatching)
* Object Oriented Programming is not:
- the same as prototype programming (class and objects)
- the same as scoping (class as the scope for methods)

- the same as code reuse (use a component in a record in SPARK)

5.2 Prototypes and Scopes in SPARK

» Types in SPARK come with methods aka primitive operations
Listing 1: show_type_primitives.ads
package Show_Type Primitives is

type Int is range 1 .. 10;
function Equal (Argl, Arg2 : Int) return Boolean;
procedure Bump (Arg : in out Int);

type Approx_Int is new Int;
-- Implicit definition of Equal and Bump for Approx Int

© ©® N o U A W N R

end Show Type Primitives;

=
o

* Scope for the prototype is current declarative region

- ... or up to the first freezing point - point at which the type must be fully defined,
e.g. when defining an object of the type

* OOP without dynamic dispatching = Abstract Data Types

65

© @ N o U A W N e

e e < e
U A W N R O

© ® N o U A W N R

NONON R R R B R R B B e e
N B O © ® N o 0 A W N = O

Advanced SPARK

5.3 Classes in SPARK

* Classes in SPARK are tagged records

Listing 2: show_classes.ads

package Show Classes is

type Int is tagged record
Min, Max, Value : Integer;
end record;

function Equal (Argl, Arg2 : Int)
procedure Bump (Arg : in out Int);

return Boolean;

type Approx_Int is new Int with record

Precision : Natural;

end record;

-- Implicit definition of Equal and Bump for Approx Int

end Show Classes;

* Derived types are specializations of the root type

- typically with more components

- inheriting the methods on the parent type

- can add their own methods

5.4 Methods in SPARK

» Derived methods can be overriding or not

Listing 3: show_derived_methods.ads

package Show Derived_Methods is
pragma Elaborate Body;
type Int is tagged record
Min, Max, Value : Integer := 0;

end record;

function Equal (Argl, Arg2 : Int)
procedure Bump (Arg : in out Int);

return Boolean;

type Approx_Int is new Int with record

Precision : Natural := 0;

end record;

overriding function Equal (Argl, Arg2

: Approx_Int)

return Boolean;

overriding procedure Bump (Arg
not overriding procedure Blur (Arg

end Show Derived Methods;

: in out Approx Int);

: in out Approx Int);

66

Chapter 5. Object-oriented Programming

© ©® N o U A W N R

W W W W Ww W NN NNNNNNNNRERBR B B B B B B B
G A W N P ©O © ® N O U & W N B O © ® N 0 0 & W N H O

Advanced SPARK

Listing 4: show_derived_methods.adb

package body Show Derived_Methods is

function Equal (Argl, Arg2 : Int) return Boolean is
(Argl = Arg2);

procedure Bump (Arg : in out Int) is
Next : constant Integer := (if Arg.Value < Integer'last
then Arg.Value + 1
else Integer'lLast);
begin
if Next <= Arg.Max then
Arg.Value := Next;
end if;
end Bump;

overriding function Equal (Argl, Arg2 : Approx Int)
return Boolean is
(Argl = Arg2);

overriding procedure Bump (Arg : in out Approx Int) is
begin

Bump (Int (Arg));
end Bump;

not overriding procedure Blur (Arg : in out Approx Int) is
Prev : constant Integer := (if Arg.Value > Integer'First
then Arg.Value - 1
else Integer'First);

begin
if Arg.Value >= Prev then
Arg.Value := Prev;
end if;
end Blur;

end Show Derived Methods;

* Method called depends on static type

5.4. Methods in SPARK 67

W @ N U A W N e

R e
N = O

© @ N U A W N e

e~ e e < e
© ® N o U A W N = O

N o U A W N e

Advanced SPARK

Listing 5: use_derived_methods.adb

with Show Derived Methods; use Show Derived Methods;

procedure Use Derived Methods is

I : Int;
AT : Approx_Int;
begin
Bump (I); -- call to Int.Bump
I.Bump; -- call to Int.Bump (object.method notation)

Bump (AI); -- call to Approx Int.Bump
Bump (Int (AI)); -- call to Int.Bump
end Use Derived Methods;

5.5 Dynamic dispatching in SPARK

* Class-wide types
- type of object that triggers dispatching
- method called depends on dynamic type

Listing 6: use_dynamic_dispatching.adb

with Show Derived Methods; use Show Derived Methods;

procedure Use Dynamic Dispatching is

I : Int;
AI : Approx_Int;
begin
declare
IC : Int'Class := Int'Class (I);
begin
IC.Bump; -- call to Int.Bump
end;
declare
IC : Int'Class := Int'Class (AI);
begin
IC.Bump; -- call to Approx_Int.Bump
end;

end Use Dynamic Dispatching;

» Class-wide views of objects
- in Ada, usually manipulated through pointers

- in SPARK, manipulated through parameter passing

Listing 7: use_classwide_dispatching.adb

with Show Derived Methods; use Show Derived Methods;
procedure Use Classwide Dispatching is

procedure Call Bump (Arg : in out Int'Class) is
begin
Arg.Bump;
(continues on next page)

68 Chapter 5. Object-oriented Programming

10
11
12
13
14
15
16

© ©® N o U A W N R

I N T T i < =
P O © ® W o 0 A W N = O

Advanced SPARK

end Call Bump;

I : Int;
AT : Approx_Int;
begin
Call Bump (Int'Class (I)); ~-- calls Int.Bump(I)
Call Bump (Int'Class (AI)); -- calls Approx Int.Bump(AI)

end Use Classwide Dispatching;

5.5.1 A trivial example

e what is called here?

Listing 8: show_trivial example.adb

procedure Show Trivial Example is

package Pkg_Trivial is
type Int is tagged record
Min, Max, Value : Integer;
end record;

procedure Bump (Arg : in out Int) is null;
end Pkg Trivial;

use Pkg Trivial;

procedure Call Bump

(Arg : in out Int'Class) is
begin

Arg.Bump;
end Call Bump;

begin
null;
end Show Trivial Example;

5.5.2 The problems with dynamic dispatching

» Control and data flow are not known statically

(continued from previous page)

- control flow - which subprogram is called when dispatching

- data flow - what data this subprogram is accessing
- similar to callbacks through subprogram pointers
* Avionics standard DO-178C lists 3 verification options

- run all tests on parent type where derived type is used instead

- cover all possible methods at dispatching calls

- prove type substitutability (Liskov Substitution Principle aka LSP)

5.5. Dynamic dispatching in SPARK

69

© ©® N o U A W N K

P e L i <
© @ N o U A W N B O

© ©® N o U A W N K

P e L <
© @ N o U A W N B O

o U A W N -

Advanced SPARK

5.6 LSP - the SPARK solution to dynamic dispatching
problems

* Class-wide contracts on methods
- Pre'Class specifies strongest precondition for the hierarchy

- Post'Class specifies weakest postcondition for the hierarchy

Listing 9: show Isp.ads
package Show_LSP is

type Int is tagged record
Min, Max, Value : Integer := 0;
end record;

procedure Bump (Arg : in out Int) with
Pre'Class => Arg.Value < Arg.Max - 10,
Post'Class => Arg.Value > Arg.Value'Old;

type Approx_Int is new Int with record
Precision : Natural := 0;
end record;

overriding procedure Bump (Arg : in out Approx Int) with
Pre'Class => Arg.Value > 100,
Post'Class => Arg.Value = Arg.Value'Old;

end Show LSP;

Listing 10: show_Isp.ads
package Show_LSP is

type Int is tagged record
Min, Max, Value : Integer := 0;
end record;

procedure Bump (Arg : in out Int) with
Pre'Class => Arg.Value < Arg.Max - 10,
Post'Class => Arg.Value > Arg.Value'Old;

type Approx_Int is new Int with record
Precision : Natural := 0;
end record;

overriding procedure Bump (Arg : in out Approx Int) with
Pre'Class => True,
Post'Class => Arg.Value = Arg.Value'Old + 10;

end Show LSP;

Listing 11: show_Isp.ads

package Show_LSP is
type Int is tagged record
Min, Max, Value : Integer := 0;
end record;

(continues on next page)

70 Chapter 5. Object-oriented Programming

10
11
12
13
14
15
16
17
18
19

© ©® N o U A W N R

L i < e
o A W N B O

A W N =

Advanced SPARK

(continued from previous page)

procedure Bump (Arg : in out Int) with
Pre'Class => Arg.Value < Arg.Max - 10,
Post'Class => Arg.Value > Arg.Value'Old;

type Approx_Int is new Int with record
Precision : Natural := 0;
end record;

overriding procedure Bump (Arg : in out Approx Int);
-- Inherited Pre'Class from Int.Bump
-- inherited Post'Class from Int.Bump

end Show LSP;

5.6.1 Verification of dynamic dispatching calls

» Class-wide contracts used for dynamic dispatching calls

Listing 12: show_dynamic_dispatching_verification.adb
with Show LSP; use Show LSP;

procedure Show Dynamic Dispatching Verification is

procedure Call Bump (Arg : in out Int'Class) with
Pre => Arg.Value < Arg.Max - 10,
Post => Arg.Value > Arg.Value'Old

is

begin
Arg.Bump;

end Call Bump;

begin
null;
end Show Dynamic Dispatching Verification;
» LSP applies to data dependencies too
- overriding method cannot read more global variables
- overriding method cannot write more global variables
- overriding method cannot have new input-output flows

- SPARK RM defines Global'Class and Depends'Class (not yet implemented —
use Global and Depends instead)

5.6.2 Class-wide contracts and data abstraction

e Abstraction can be used in class-wide contracts

* Typically use expression functions for abstraction

Listing 13: show classwide contracts.ads

package Show Classwide Contracts is

type Int is tagged private;

(continues on next page)

5.6. LSP - the SPARK solution to dynamic dispatching problems 71

© @ N o u

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

© ® N o U A W N R

N L i T
N o U A W N B O

© ©® N o U A W N K

-
o

Advanced SPARK

(continued from previous page)
function Get Value (Arg : Int) return Integer;

function Small (Arg : Int) return Boolean with Ghost;

procedure Bump (Arg : in out Int) with
Pre'Class => Arg.Small,
Post'Class => Arg.Get Value > Arg.Get Value'Old;

private

type Int is tagged record
Min, Max, Value : Integer := 0;
end record;

function Get Value (Arg : Int) return Integer is
(Arg.Value);

function Small (Arg : Int) return Boolean is
(Arg.Value < Arg.Max - 10);

end Show Classwide Contracts;

5.6.3 Class-wide contracts, data abstraction and overriding

* Abstraction functions can be overridden freely

- overriding needs not be weaker or stronger than overridden

Listing 14: show_contract override.ads

package Show_Contract_Override is

type Int is tagged record
Min, Max, Value : Integer := 0;
end record;

function Small (Arg : Int) return Boolean is
(Arg.Value < Arg.Max - 10);

type Approx_Int is new Int with record
Precision : Natural := 0;
end record;

overriding function Small (Arg : Approx Int) return Boolean is
(True);

end Show Contract Override;

Listing 15: show_contract_override.ads

package Show_Contract_Override is

type Int is tagged record
Min, Max, Value : Integer := 0;
end record;

function Small (Arg : Int) return Boolean is
(Arg.Value < Arg.Max - 10);

type Approx_Int is new Int with record
(continues on next page)

72 Chapter 5. Object-oriented Programming

11
12
13
14
15
16
17

© ©® N o U A W N R

e e L i <
© @ N o U A W N B O

Advanced SPARK

(continued from previous page)

Precision : Natural := 0;
end record;

function Small (Arg : Approx Int) return Boolean is
(Arg.Value in 1 .. 100);

end Show Contract Override;
* Inherited contract reinterpreted for derived class

Listing 16: show_contract override.ads

package Show_Contract_Override is

type Int is tagged record
Min, Max, Value : Integer := 0;
end record;

procedure Bump (Arg : in out Int) with
Pre'Class => Arg.Value < Arg.Max - 10,
Post'Class => Arg.Value > Arg.Value'0Old;

type Approx_Int is new Int with record
Precision : Natural := 0;
end record;

overriding procedure Bump (Arg : in out Approx Int);
-- Inherited Pre'Class uses Approx_Int.Small
-- Inherited Post'Class uses Approx_Int.Get Value

end Show Contract Override;

5.7 Dynamic semantics of class-wide contracts

* Class-wide precondition is the disjunction (or) of

- own class-wide precondition, and

- class-wide preconditions of all overridden methods
* Class-wide postcondition is the conjunction (and) of

- own class-wide postcondition, and

- class-wide postconditions of all overridden methods
* Plain Post + class-wide Pre / Post can be used together
* Proof guarantees no violation of contracts at runtime

- LSP guarantees stronger than dynamic semantics

5.7. Dynamic semantics of class-wide contracts 73

© ® N o U A W N R

=R e
N = O

© ©® N o U A W N R

R
w N R o

W @ N U AW N e

Advanced SPARK

5.8 Redispatching and Extensions Visible aspect

* Redispatching is dispatching after class-wide conversion

- formal parameter cannot be converted to class-wide type when Exten-
sions Visible is False

Listing 17: show_redispatching.adb

with Show Contract Override; use Show Contract Override;
procedure Show Redispatching is

procedure Re Call Bump (Arg : in out Int) is
begin
Int'Class (Arg).Bump;
end Re Call Bump;
begin
null;

end Show Redispatching;

» Aspect Extensions Visible allows class-wide conversion

- parameter mode used also for hidden components

Listing 18: show_redispatching.adb

with Show Contract Override; use Show Contract Override;
procedure Show Redispatching is

procedure Re Call Bump (Arg : in out Int)
with Extensions Visible is
begin
Int'Class (Arg).Bump;
end Re Call Bump;
begin
null;

end Show Redispatching;

5.9 Code Examples / Pitfalls

5.9.1 Example #1

Listing 19: oo_example_01.ads
package 00 Example 01 is

type Int is record
Min, Max, Value : Integer;
end record;

procedure Bump (Arg : in out Int) with
Pre'Class => Arg.Value < Arg.Max - 10,
Post'Class => Arg.Value > Arg.Value'Old;
(continues on next page)

74 Chapter 5. Object-oriented Programming

10
11

©W @ N U A W N e

=
= o

© ©® N o U A W N K

I e T e
S © ® N o U B W N H O

Advanced SPARK

(continued from previous page)
end 00 Example 01;

This code is not correct. Class-wide contracts are only allowed on tagged records.

5.9.2 Example #2

Listing 20: oo_example_02.ads
package 00 Example 02 is
type Int is tagged record

Min, Max, Value : Integer;
end record;

procedure Bump (Arg : in out Int) with
Pre => Arg.Value < Arg.Max - 10,
Post => Arg.Value > Arg.Value'Old;

end 00 Example 02;

This code is not correct. Plain precondition on dispatching subprogram is not allowed in
SPARK. Otherwise it would have to be both weaker and stronger than the class-wide pre-
condition (because they are both checked dynamically on both plain calls and dispatching
calls).

Plain postcondition is allowed, and should be stronger than class-wide postcondition (plain
postcondition used for plain calls).

5.9.3 Example #3

Listing 21: oo_example_03.ads
package 00_Example_03 is

pragma Elaborate Body;

type Int is tagged record
Min, Max, Value : Integer;
end record;

procedure Bump (Arg : in out Int) with
Pre'Class => Arg.Value < Arg.Max - 10,
Post'Class => Arg.Value > Arg.Value'Old;

type Approx_Int is new Int with record
Precision : Natural := 0;
end record;

overriding procedure Bump (Arg : in out Approx Int) with
Post'Class => Arg.Value = Arg.Value'Old + 10;

end 00 Example 03;

5.9. Code Examples / Pitfalls 75

W @ N U A W N e

N N e
N o U A W N B O

© ©® N o U A W N K

=
o

Advanced SPARK

Listing 22: oo_example_03.adb

package body 00 Example_ 03 is

procedure Bump (Arg :

begin
Arg.Value
end Bump;

overriding procedure Bump (Arg

begin
Arg.Value
end Bump;

:= Arg.Value + 10;

:= Arg.Value + 10;

end 00 Example 03;

in out Int) is

: in out Approx Int) is

This code is correct. Class-wide precondition of Int.Bump is inherited by Approx_Int.Bump.
Class-wide postcondition of Approx_Int.Bump is stronger than the one of Int.Bump.

5.9.4 Example #4

package 00 Example 04 is

Listing 23: oo_example_04.ads

type Int is tagged record

Min, Max, Value :

end record;

function "+"

Integer;

(Argl, Arg2 : Int)
Pre'Class => Argl.Min = Arg2.Min
and Argl.Max = Arg2.Max;

return Int with

type Approx_Int is new Int with record

Precision :

end record;

Natural;

-- 1inherited function

end 00 Example 04;

“

+"

This code is not correct. A type must be declared abstract or "+" overridden.

5.9.5 Example #5

package 00_Example_05 is

Listing 24: oo_example_05.ads

type Int is tagged record

Min, Max, Value :

end record;

procedure Reset (Arg

Integer;

: out Int);

type Approx_Int is new Int with record

Precision :

Natural;

(continues on next page)

76

Chapter 5. Object-oriented Programming

12
13
14
15

© ® N o U A W N e

e i < e
U A W N B O

© @ N U A W N R

—
o

© N O U A W N R

Advanced SPARK

(continued from previous page)
end record;

-- inherited procedure Reset

end 00 Example 05;

This code is not correct. A type must be declared abstract or Reset overridden Reset is
subject to Extensions Visible False.

5.9.6 Example #6

Listing 25: oo_example_06.ads
package 00 Example 06 is

type Int is tagged record

Min, Max, Value : Integer;
end record;
procedure Reset (Arg : out Int) with Extensions Visible;
type Approx_Int is new Int with record

Precision : Natural;
end record;

-- Inherited procedure Reset

end 00 Example 06;

Listing 26: oo_example_06.adb
package body 00 Example 06 is

procedure Reset (Arg : out Int) is

begin
Arg := Int'(Min => -100,
Max => 100,
Value => 0);
end Reset;

end 00 Example 06;

This code is not correct. High: extension of Arg is not initialized in Reset.

5.9.7 Example #7

Listing 27: oo_example_07.ads
package 00 Example 07 is
pragma Elaborate Body;
type Int is tagged record
Min, Max, Value : Integer;

end record;

(continues on next page)

5.9. Code Examples / Pitfalls 77

10
11
12
13
14
15
16
17
18
19
20
21

© ©® N o U A W N K

R L N < e =
N o 0 A W N B O

18
19
20
21
22

Advanced SPARK

function Zero return Int;

procedure Reset (Arg

(continued from previous page)

: out Int) with Extensions Visible;

type Approx_Int is new Int with record

Precision : Natural;

end record;

overriding function Zero return Approx Int;

-- 1nherited procedure Reset

end 00 Example 07;

Listing 28: oo_example_07.adb

package body 00 Example_ 07 is

function Zero return Int is

((0, 0, 0));
procedure Reset (Arg : out Int) is
begin

Int'Class (Arg) := Zero;
end Reset;

function Zero return Approx Int is
((6, 0, 6, 0));

end 00 Example 07;

This code is correct. Redispatching ensures that Arg is fully initialized on return.

5.9.8 Example #8

Listing 29: file_system.ads

package File_System is
type File is tagged private;

function Closed (F :
function Is Open (F :

procedure Create (F :
Post'Class => F.Closed;

procedure Open Read (F :
Pre'Class => F.(Closed,
Post'Class => F.Is Open;

procedure Close (F :
Pre'Class => F.Is Open,
Post'Class => F.Closed;

out File) with

File) return Boolean;
File) return Boolean;

in out File) with

in out File) with

private
type File is tagged record
Closed : Boolean := True;
Is Open : Boolean := False;
(continues on next page)
78 Chapter 5. Object-oriented Programming

23
24
25
26
27
28
29
30
31

W N U A W N e

P~ e e O e <
© ® N o U A W N B O

W N U A W N &

i < e
A W N B O

Advanced SPARK

end record;

function Closed (F : File) return Boolean is

(F.Closed);

function Is Open (F : File) return Boolean is

(F.Is Open);

end File System;

Listing 30: file_system.adb
package body File System is

procedure Create (F : out File) is

begin
F.Closed = True;
F.Is Open := False;

end Create;
procedure Open Read (F : in out File) is
begin
F.Is Open := True;
end Open Read;
procedure Close (F : in out File) is
begin
F.Closed
end Close;

:= True;

end File System;

Listing 31: oo_example_08.adb

with File System; use File System;
procedure 00 Example 08 is
procedure Use File System (F : out File'Class) is
begin
F.Create;
F.Open_Read;
F.Close;
end Use File System;

begin
null;
end 00 Example 08;

(continued from previous page)

This code is correct. State automaton encoded in class-wide contracts is respected.

5.9. Code Examples / Pitfalls

79

© @ N o U A W N R

NONONNNNN O E R R R e e e
o U A W N P O © ® N O U & W N B O

© @ N U A W N e

[T B = T S R~ B S < R S
P O © ® W o U A W N = O

A W N R

Advanced SPARK

5.9.9 Example #9

Listing 32: file_system-sync.ads

package File System.Sync is
type File is new File System.File with private;
function Is Synchronized (F : File) return Boolean;

procedure Create (F : out File) with
Post'Class => F.Closed;

procedure Open Read (F : in out File) with
Pre'Class => F.Closed,
Post'Class => F.Is Open and F.Is Synchronized;

procedure Close (F : in out File) with
Pre'Class => F.Is Open and F.Is Synchronized,
Post'Class => F.Closed;

private
type File is new File System.File with record
In Synch : Boolean := True;
end record;

function Is Synchronized (F : File) return Boolean is
(F.In_Synch);

end File System.Sync;

Listing 33: file_system-sync.adb
package body File System.Sync is

procedure Create (F : out File) is
begin
File System.File (F).Create;
F.In Synch := True;
end Create;

procedure Open Read (F : in out File) is
begin

File System.File (F).Open_Read;

F.In Synch := True;
end Open Read;

procedure Close (F : in out File) is
begin
File System.File (F).Close;
F.Closed := True;
end Close;

end File System.Sync;

Listing 34: oo_example_09.adb
with File System.Sync; use File System.Sync;

procedure 00 Example 09 is

(continues on next page)

80 Chapter 5. Object-oriented Programming

© @ N o u

10
11
12
13
14

© @ N U A W N e

N NN NN NN NN B B B B B 2 el e
® N o0 U A W N B O © ® N O U A W N F O

©W @ N U A W N e

Advanced SPARK

(continued from previous page)
procedure Use File System (F : out File'Class) is
begin
F.Create;
F.Open Read;
F.Close;
end Use File System;

begin
null;
end 00 Example 09;

This code is not correct. Medium: class-wide precondition might be stronger than overrid-
den one

5.9.10 Example #10

Listing 35: file_system-sync.ads
package File System.Sync is

type File is new File System.File with private;
function Is Synchronized (F : File) return Boolean;

procedure Create (F : out File) with
Post'Class => F.Closed;

procedure Open Read (F : in out File) with
Pre'Class => F.Closed,
Post'Class => F.Is Open;

procedure Close (F : in out File) with
Pre'Class => F.Is Open,
Post'Class => F.Closed;

private
type File is new File System.File with record
In Synch : Boolean;
end record with
Predicate => File System.File (File).Closed
or In Synch;

function Is Synchronized (F : File) return Boolean is
(F.In_Synch);

end File System.Sync;

Listing 36: file_system-sync.adb
package body File System.Sync is

procedure Create (F : out File) is
begin
File System.File (F).Create;
F.In _Synch := True;
end Create;

procedure Open Read (F : in out File) is
(continues on next page)

5.9. Code Examples / Pitfalls 81

10
11
12
13
14
15
16
17
18
19
20
21

©W @ N U A W N e

i < e
A W N B O

Advanced SPARK

begin

(continued from previous page)

File System.File (F).Open_Read;
F.In Synch := True;

end Open_Read;

procedure Close (F : in out File) is

begin

File System.File (F).Close;
F.Closed := True;

end Close;

end File System.Sync;

Listing 37: oo_example_10.adb

with File System.Sync; use File System.Sync;

procedure 00 Example 10 is

procedure Use File System (F : out File'Class) is

begin
F.Create;
F.Open Read;
F.Close;

end Use File System;

begin
null;
end 00 Example 10;

This code is correct.

Predicate encodes the additional constraint on opened files. Type

invariants are not yet supported on tagged types in SPARK.

82

Chapter 5. Object-oriented Programming

© @ N U A W N e

—
o

® N O U A W N E

CHAPTER
SIX

GHOST CODE

6.1 What is ghost code?

ghost code is part of the program that is added for the purpose of specification
Why3 team, “The Spirit of Ghost Code”
... or verification
addition by SPARK team
» Examples of ghost code:
- contracts (Pre, Post, Contract Cases, etc.)
- assertions (pragma Assert, loop (in)variants, etc.)
- special values Func'Result, Var'0Old, Var'Loop Entry

* |Is it enough?

6.2 Ghost code - A trivial example

* how to express it?

Listing 1: show_trivial_example.ads

package Show Trivial Example is
type Data_Array is array (1 .. 10) of Integer;

Data : Data Array;
Free : Natural;

procedure Alloc;

end Show Trivial Example;

Listing 2: show_trivial_example.adb

package body Show Trivial Example is

procedure Alloc is
begin
-- some computations here
-- assert that Free “increases”
null;
(continues on next page)

83

10
11

© ©® N o U A W N R

=
o

© ©® N o U A W N R

o
= o

Advanced SPARK

(continued from previous page)

end Alloc;

end Show Trivial Example;

6.3 Ghost variables - aka auxiliary variables

* Variables declared with aspect Ghost
- declaration is discarded by compiler when ghost code ignored
* Ghost assignments to ghost variables

- assignment is discarded by compiler when ghost code ignored

Listing 3: show_ghost variable.ads

package Show_Ghost_Variable is
type Data Array is array (1 .. 10) of Integer;

Data : Data Array;
Free : Natural;

procedure Alloc;

end Show Ghost Variable;

Listing 4: show_ghost variable.adb
package body Show_Ghost_Variable is

procedure Alloc is

Free Init : Natural with Ghost;
begin

Free Init := Free;

-- some computations here

pragma Assert (Free > Free Init);
end Alloc;

end Show Ghost Variable;

6.4 Ghost variables - non-interference rules

* Ghost variable cannot be assigned to non-ghost one
- Free := Free Init;
* Ghost variable cannot indirectly influence assignment to non-ghost one

if Free Init < Max then
Free := Free + 1;
end if;

84 Chapter 6. Ghost Code

© ©® N o U A W N R

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

© ©® N o U A W N R

I R I R T T <
S © ® N o U B W N ~ O

Advanced SPARK

Listing 5: show_non_interference.adb

procedure Show Non Interference is
type Data Array is array (1 .. 10) of Integer;
Data : Data Array;
Free : Natural;
Free Init : Natural with Ghost;
procedure Alloc is
begin
Free Init := Free;
-- some computations here
pragma Assert (Free > Free Init);
end Alloc;
procedure Assign (From : Natural; To : out Natural) is
begin
To := From;
end Assign;
begin

Assign (From => Free Init, To => Free);
end Show Non Interference;

6.5 Ghost statements

* Ghost variables can only appear in ghost statements
- assignments to ghost variables
- assertions and contracts

- calls to ghost procedures

Listing 6: show_ghost statements.adb

procedure Show Ghost Statements is
type Data_Array is array (1 .. 10) of Integer;

Data : Data Array;
Free : Natural;

Free Init : Natural with Ghost;

procedure Alloc is
begin
Free Init := Free;
-- some computations here
pragma Assert (Free > Free Init);
end Alloc;

procedure Assign (From : Natural; To : out Natural)
with Ghost

is

begin

(continues on next page)

6.5. Ghost statements

85

21
22
23
24
25
26

N~ o U A W N e

Advanced SPARK

(continued from previous page)
To := From;
end Assign;

begin
Assign (From => Free, To => Free_Init);
end Show Ghost Statements;

procedure Show Ghost Statements is

begin
-- Non-ghost variable "Free" cannot appear as actual in
-- call to ghost procedure
Assign (From => Free Init, To => Free);

end Show Ghost Statements;

6.6 Ghost procedures

* Ghost procedures cannot write into non-ghost variables

procedure Assign (Value : Natural) with Ghost is

begin
-- "Free" is a non-ghost variable
Free := Value;

end Assign;

* Used to group statements on ghost variables

- in particular statements not allowed in non-ghost procedures

procedure Assign Cond (Value : Natural) with Ghost is

begin
if Condition then
Free Init := Value;
end if;

end Assign Cond;

* Can have Global (including Proof In) & Depends contracts

6.7 Ghost functions

* Functions for queries used only in contracts
» Typically implemented as expression functions
- in private part - proof of client code can use expression

- orin body - only proof of unit can use expression

Listing 7: show_ghost function.ads

package Show Ghost Function is
type Data_Array is array (1 .. 10) of Integer;

Data : Data Array;
Free : Natural;

(continues on next page)

86 Chapter 6. Ghost Code

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

© @ N U A W N R

e e e s
o U A W N B O

Advanced SPARK

(continued from previous page)
Free Init : Natural with Ghost;

procedure Alloc with

Pre => Free Memory > 0,

Post => Free Memory < Free Memory'0Old;
function Free Memory return Natural with Ghost;

private

-- Completion of ghost function declaration
function Free Memory return Natural is

(0); -- dummy implementation
-- If function body as declaration:

- - function Free Memory return Natural is (...) with Ghost;

end Show Ghost Function;

6.8 Imported ghost functions

* Ghost functions without a body

- cannot be executed

function Free Memory return Natural with Ghost, Import;

» Typically used with abstract ghost private types
- definition in SPARK _Mode (0ff)
* type is abstract for GNATprove

Listing 8: show_imported_ghost_function.ads

package Show_Imported Ghost_ Function
with SPARK_Mode => On is

type Memory Chunks is private;
function Free Memory return Natural with Ghost;

function Free Memory return Memory Chunks
with Ghost, Import;

private
pragma SPARK Mode (0ff);

type Memory Chunks is null record;
end Show Imported Ghost Function;
» Definition of ghost types/functions given in proof

- either in Why3 using External Axiomatization

- orin an interactive prover (Coq, Isabelle, etc.)

6.8. Imported ghost functions 87

o U A W N -

© ® N o U A W N e

e <
> W N = O

© ® N o U A W N e

Advanced SPARK

6.9 Ghost packages and ghost abstract state

* Every entity in a ghost package is ghost
- local ghost package can group all ghost entities
- library-level ghost package can be withed/used in regular units

* Ghost abstract state can only represent ghost variables

Listing 9: show_ghost_package.ads

package Show_Ghost_Package
with Abstract State => (State with Ghost) is

function Free Memory return Natural with Ghost;

end Show Ghost Package;

Listing 10: show_ghost_package.adb

package body Show_Ghost_Package
with Refined_State => (State => (Data, Free, Free Init)) is

type Data_Array is array (1 .. 10) of Integer;

Data : Data Array with Ghost;
Free : Natural with Ghost;

Free Init : Natural with Ghost;

function Free Memory return Natural is
(0); -- dummy implementation

end Show Ghost Package;

* Non-ghost abstract state can contain both ghost and non-ghost variables

6.10 Executing ghost code

* Ghost code can be enabled globally
- using compilation switch -gnata (for all assertions)
* Ghost code can be enabled selectively
- using pragma Assertion Policy (Ghost => Check)

- SPARK rules enforce consistency - in particular no write disabled

Listing 11: show_exec_ghost code.ads

package Show_Exec_Ghost_Code is

pragma Assertion Policy (Ghost => Check);
-- pragma Assertion Policy (Ghost => Ignore, Pre => Check);

procedure Alloc with
Pre => Free Memory > 0;

function Free Memory return Natural with Ghost;
(continues on next page)

88 Chapter 6. Ghost Code

Advanced SPARK

(continued from previous page)

10
1 end Show Exec Ghost Code;

* GNATprove analyzes all ghost code and assertions

6.11 Examples of use

6.11.1 Encoding a state automaton

* Tetris in SPARK
- at Tetris?
* Global state encoded in global ghost variable
- updated at the end of procedures of the API

type State is (Piece Falling, ...) with Ghost;
Cur_State : State with Ghost;

* Properties encoded in ghost functions

function Valid Configuration return Boolean is
(case Cur_ State is
when Piece Falling => ...,
when ...)
with Ghost;

6.11.2 Expressing useful lemmas

* GCD in SPARK
- at GCD*

* Lemmas expressed as ghost procedures

procedure Lemma Not Divisor (Argl, Arg2 : Positive) with
Ghost,
Global => null,
Pre => Argl in Arg2 / 2 + 1 .. Arg2 - 1,
Post => not Divides (Argl, Arg2);

* Most complex lemmas further refined into other lemmas

- code in procedure body used to guide proof (e.g. for induction)

3 http://blog.adacore.com/tetris-in-spark-on-arm-cortex-m4
4 http://www.spark-2014.org/entries/detail/gnatprove-tips-and-tricks-proving-the-ghost-common-denominator-gcd

6.11. Examples of use 89

http://blog.adacore.com/tetris-in-spark-on-arm-cortex-m4
http://www.spark-2014.org/entries/detail/gnatprove-tips-and-tricks-proving-the-ghost-common-denominator-gcd

Advanced SPARK

6.11.3 Specifying an API through a model

* Red black trees in SPARK
- at Red black trees?
* Invariants of data structures expressed as ghost functions

- using Type Invariant on private types

Model of data structures expressed as ghost functions
- called from Pre / Post of subprograms from the API
* Lemmas expressed as ghost procedures

- sometimes without contracts to benefit from inlining in proof

6.12 Extreme proving with ghost code - red black trees
in SPARK

1200
1000

800

Ghost
600
Contract

400 B Code

200

)] L] I

Binary Trees Search Trees Red-black Trees

5 http://www.spark-2014.org/entries/detail/research-corner-auto-active-verification-in-spark

90 Chapter 6. Ghost Code

http://www.spark-2014.org/entries/detail/research-corner-auto-active-verification-in-spark

© @ N U A W N e

I R T <
S © ® N o u B~ W N B O

Advanced SPARK

6.13 Positioning ghost code in proof techniques

compiler
correctness /.
[] 'd
Degree of automation ‘
”
,
7
7%
PROPERTY vet more 7 < 00
COMPLEXITY complex boolean + complex 7 %,
A arith + quantifig & %
nonlinear
int arith .“;
modular-a_rlth @ %,
+ quantifiers % s,
) ?% %
5, >,
® % o,
(PN I ©
“, > %
boolean tases oo,/ 2
+ linear int arith @LG
‘P %
%
%, USER-PERCEIVED
s, > COMPLEXITY
%
&

6.14 Code Examples / Pitfalls

6.14.1 Example #1

Listing 12: example_01l.adb

procedure Example 01 is
type Data_Array is array (1 .. 10) of Integer;

Data
Free

: Data_Array;
: Natural;

procedure Alloc is

Free Init : Natural with Ghost;
begin
Free Init := Free;

-- some computations here
if Free <= Free Init then
raise Program Error;
end if;
end Alloc;
begin
null;

end Example 01;

This code is not correct. A ghost entity cannot appear in this context.

6.13. Positioning ghost code in proof techniques

91

© @ N o U A W N R

NN NN NN B2 B B B R e R m e e
G0 & W N B O © ® W O U A W N B O

Advanced SPARK

6.14.2 Example #2

Listing 13: example_02.adb

procedure Example 02 is

type Data_Array is array (1 .. 10) of Integer;

Data : Data Array;
Free : Natural;

procedure Alloc is
Free Init : Natural with Ghost;

procedure Check with Ghost is
begin
if Free <= Free Init then
raise Program Error;

end if;

end Check;

begin
Free Init := Free;
-- some computations here
Check;

end Alloc;

begin
null;

end Example 02;

This code is correct. Note that procedure Check is inlined for proof (no contract).

6.14.3 Example #3

92

Chapter 6. Ghost Code

© @ N U A W N R

10
11
12
13
14
15

© N O U A W N R

© ©® N o U A W N R

N L i <
N o 0 A W N B O

Advanced SPARK

Listing 14: example_03.ads
package Example 03 is

type Data_Array is array (1 .. 10) of Integer;

Data : Data Array;
Free : Natural;

pragma Assertion Policy (Pre => Check);

procedure Alloc with
Pre => Free Memory > 0;

function Free Memory return Natural with Ghost;

end Example 03;

This code is not correct. Incompatible ghost policies in effect during compilation, as ghost
code is ignored by default. Note that GNATprove accepts this code as it enables all ghost
code and assertions.

6.14.4 Example #4

Listing 15: example_04.ads
package Example_04 is

procedure Alloc with
Post => Free Memory < Free Memory'0Old;

function Free Memory return Natural with Ghost;

end Example 04;

Listing 16: example_04.adb
package body Example_ 04 is

Free : Natural;
: constant := 1000;

function Free Memory return Natural is
begin

return Max - Free + 1;
end Free Memory;

procedure Alloc is
begin

Free := Free + 10;
end Alloc;

end Example 04;

This code is not correct. No postcondition on Free Memory that would allow proving the
postcondition on Alloc.

6.14. Code Examples / Pitfalls 93

® N O U A W N &

W N U A W N e

i < e
A W N B O

© @ N o U A W N R

T i N e i
© N o U A W N B O

19

Advanced SPARK

6.14.5 Example #5

Listing 17: example_05.ads
package Example 05 is

procedure Alloc with
Post => Free Memory < Free Memory'0ld;

function Free Memory return Natural with Ghost;

end Example 05;

Listing 18: example_05.adb

package body Example 05 is

Free : Natural;

: constant := 1000;

function Free Memory return Natural is (Max - Free + 1);

procedure Alloc is

begin

Free := Free + 10;

end Alloc;

end Example 05;

This code is correct. Free_Memory has an implicit postcondition as an expression function.

6.14.6 Example #6

Listing 19: example_06.adb

procedure Example 06 is

subtype Resource is Natural range 0 .. 1000;
subtype Num is Natural range 0 .. 6;
subtype Index is Num range 1 .. 6;

type Data is array (Index) of Resource;

function Sum (D : Data; To : Num) return Natural is
(i1f To = 0 then 0 else D (To) + Sum (D, To - 1))
with Ghost;

procedure Create (D : out Data) with
Post => Sum (D, D'Last) < 42

is
begin
for J in D'Range loop
D (J) :=7J;
pragma Loop Invariant (2 * Sum (D, J) <=3 * (J + 1));
end loop;
end Create;
begin
null;

end Example 06;

94 Chapter 6.

Ghost Code

© O N o U A W N e

e~ e e <
© ® N o U B W N = O

20
21
22
23
24

© ® N o U A W N R

I R T
S © ® N o U B W N B O

Advanced SPARK

This code is not correct. Info: expression function body not available for proof (Sum may
not return).

6.14.7 Example #7

Listing 20: example_07.adb

procedure Example 07 is

subtype Resource is Natural range 0 .. 1000;
subtype Num is Natural range 0 .. 6;
subtype Index is Num range 1 .. 6;

type Data is array (Index) of Resource;

function Sum (D : Data; To : Num) return Natural is
(1f To = 0 then 0 else D (To) + Sum (D, To - 1))
with Ghost, Annotate => (GNATprove, Terminating);

procedure Create (D : out Data) with
Post => Sum (D, D'Last) < 42

is
begin
for J in D'Range loop
D (J) :=7J;
pragma Loop Invariant (2 * Sum (D, J) <=3 * (J + 1));
end loop;
end Create;
begin
null;

end Example 07;

This code is correct. Note that GNATprove does not prove the termination of Sum here.

6.14.8 Example #8

Listing 21: example_08.adb

procedure Example 08 is

subtype Resource is Natural range 0 .. 1000;
subtype Num is Natural range 0 .. 6;
subtype Index is Num range 1 .. 6;

type Data is array (Index) of Resource;

function Sum (D : Data; To : Num) return Natural is
(1f To = 0 then 0 else D (To) + Sum (D, To - 1))
with Ghost, Annotate => (GNATprove, Terminating);

procedure Create (D : out Data) with
Post => Sum (D, D'Last) < 42

is
begin
for J in D'Range loop
D (J) :=7J;
end loop;
end Create;

(continues on next page)

6.14. Code Examples / Pitfalls 95

21
22
23

© @ N U A W N e

NONONNNNN B H B B R e e e
o U B W N P O © ® N O U A W N B O

© ©® N o U A W N R

e
w N R O

Advanced SPARK

begin

null;

end Example 08;

(continued from previous page)

This code is correct. The loop is unrolled by GNATprove here, as D'Range is 0 .. 6. The
automatic prover unrolls the recursive definition of Sum.

6.14.9 Example #9

Listing 22: example_09.adb

with Ada.Containers.Functional Vectors;

procedure Example 09 is

subtype Resource is Natural range 0 .. 1000;
subtype Index is Natural range 1 .. 42;

package Seqs is new
Ada.Containers.Functional Vectors (Index, Resource);
use Seqs;

function Create return Sequence with
Post => (for all K in 1 .. Last (Create'Result) =>
Get (Create'Result, K) = K)
is
S : Sequence;
begin
for K in 1 .. 42 loop
S := Add (S, K);
end loop;
return S;
end Create;

begin

null;

end Example 09;

This code is not correct. Loop requires a loop invariant to prove the postcondition.

6.14.10 Example #10

Listing 23: example_10.adb

with Ada.Containers.Functional Vectors;

procedure Example 10 is

subtype Resource is Natural range 0 .. 1000;
subtype Index is Natural range 1 .. 42;

package Seqs is new
Ada.Containers.Functional_Vectors (Index, Resource);
use Seqs;

function Create return Sequence with
Post == (for all K in 1 .. Last (Create'Result) =>

(continues on next page)

96

Chapter 6. Ghost Code

Advanced SPARK

(continued from previous page)

14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29

is

S : Sequence;
begin

for K in 1 ..

S := Add (S, K);
Loop Invariant (Integer (Length (S))
Loop Invariant
(for all J in 1 ..

pragma
pragma

end loop;
return S;
end Create;

begin
null;
end Example 10;

This code is correct.

Get (Create'Result, K) =

K => Get (S, J)

6.14. Code Examples / Pitfalls

Advanced SPARK

98 Chapter 6. Ghost Code

CHAPTER
SEVEN

TEST AND PROOF

7.1 Various Combinations of Tests and Proofs

e Overall context is functional verification of code
* Combination can take various forms:

- Test before Proof - contracts used first in test, possibly later in proof

Test for Proof - contracts executed in test to help with development of proof

Test alongside Proof - some modules are tested and other modules are proved

Test as Proof - exhaustive test as good as proof

Test on top of Proof - proof at unit level completed with test at integration level,
also using contracts

7.2 Test (be)for(e) Proof

7.2.1 Activating Run-time Checks

* Need to activate run-time checks in executable
* Constraint Error exceptions activated by default
- Use -gnat-p to revert effect of previous -gnatp (say in project file)
- Use -gnato to activate overflow checking (default since GNAT 7.3)
* Special handling of floating-point computations
- Use -gnateF to activate bound checking on standard float types

- Use -msse2 -mfpmath=sse to forbid use of 80bits registers and FMA on x86 pro-
cessors

- Runtime/BSP should enforce use of Round-Nearest-tie-to-Even (RNE) rounding
mode

29

Advanced SPARK

7.2.2 Activating Assertions

* Need to activate assertions in executable
* Assertion_Error exceptions deactivated by default
- Use -gnata to activate globally
- Use pragma Assertion Policy to activate file-by-file
- Use -gnateE to get more precise error messages (Contract Cases)

* Special assertions checked at run time

Contract Cases — checks one and only one case activated

Loop_Invariant — checks assertion holds (even if not inductive)

Assume — checks assertion holds (even if not subject to proof)

Loop Variant — checks variant decreases wrt previous iteration

7.2.3 Activating Ghost Code

* Need to activate ghost code in executable
* Ghost code, like assertions, is deactivated by default

- Use -gnata to activate globally

- Use pragma Assertion Policy (Ghost => Check) to activate locally
* Inconsistent combinations will be rejected by GNAT

- Ignored ghost entity in activated assertion

- Ignored ghost assignment to activated ghost variable

7.3 Test for Proof

7.3.1 Overflow Checking Mode

* Problem: ignore overflow checks in assertions/contracts

- Only applies to signed integer arithmetic

- Does not apply inside an expression function returning an integer
* Solution: use unbounded arithmetic in assertions/contracts

- Will use 64bits signed arithmetic when sufficient

- Otherwise use a run-time library for unbounded arithmetic
* Two ways to activate unbounded arithmetic

- Use -gnatol3 compiler switch

- Use pragma Overflow Mode with arguments (General => Strict, Assertions
=> Eliminated) in configuration pragma file

100 Chapter 7. Test and Proof

Advanced SPARK

7.4 Test alongside Proof

7.4.1 Checking Proof Assumptions

* Need to check dynamically the assumptions done in proof
- Postcondition of tested subprogram called in proved subprogram
- Precondition of proved subprogram called in tested subprogram
* Other assumptions beyond pre- and postconditions
- Global variables read and written by tested subprogram
- Non-aliasing of inputs and outputs of proved subprogram
- No run-time errors in tested subprogram
* GNATprove can list assumptions used in proof
- Switch - -assumptions adds info in gnatprove.out file

* See "Explicit Assumptions - A Prenup for Marrying Static and Dynamic Program Verifi-
cation"

7.4.2 Rules for Defining the Boundary

* SPARK Mode defines a simple boundary test vs. proof
- Subprograms with SPARK Mode (0n) should be proved
- Subprograms with SPARK Mode (0ff) should be tested
* SPARK Mode can be used at different levels

- Project-wise switch in configuration pragma file (with value On) — explicit exemp-
tions of units/subprograms in the code

- Distinct GNAT project with SPARK _Mode (0On) for proof on subset of units
- Explicit SPARK _Mode (0n) on units that should be proved
* Unproved checks inside proved subprograms are justified

- Use of pragma Annotate inside the code

7.4.3 Special Compilation Switches

* Validity checking for reads of uninitialized data
- Compilation switch -gnatVa enables validity checking
- pragma Initialize Scalars uses invalid default values

- Compilation switch -gnateV enables validity checking for composite types
(records, arrays) — extra checks to detect violation of SPARK stronger data ini-
tialization policy

* Non-aliasing checks for parameters
- Compilation switch -gnateA enables non-aliasing checks between parameters

- Does not apply to aliasing between parameters and globals

7.4. Test alongside Proof 101

Advanced SPARK

7.5 Test as Proof

7.5.1 Feasibility of Exhaustive Testing

* Exhaustive testing covers all possible input values
- Typically possible for numerical computations involving few values
- e.g. OK for 32 bits values, not for 64 bits ones
* binary op on 16 bits — 1 second with 4GHz
* unary op on 32 bits — 1 second with 4GHz
* binary op on 32 bits — 2 years with 64 cores at 4GHz
- In practice, this can be feasible for trigonometric functions on 32 bits floats
* Representative/boundary values may be enough
- Partitioning of the input state in equivalent classes

- Relies on continuous/linear behavior inside a partition

7.6 Test on top of Proof

7.6.1 Combining Unit Proof and Integration Test

* Unit Proof of AORTE combined with Integration Test
- Combination used by Altran UK on several projects
- Unit Proof assumes subprogram contracts
- Integration Test verifies subprogram contracts

* Unit Proof of Contracts combined with Integration Test
- Test exercises the assumptions made in proof

- One way to show Property Preservation between Source Code and Executable
Object Code from DO-178C/D0O-333

* Integration Test performed twice: once with contracts to show they are verified
in EOC, once without to show final executable behaves the same

7.7 Test Examples / Pitfalls

7.7.1 Example #1

| am stuck with an unproved assertion. My options are:
* switch --level to 4 and --timeout to 360
* open a ticket on GNAT Tracker
* justify the unproved check manually
Evaluation: This approach is not correct. Why not, but only after checking this last option:

* run tests to see if the assertion actually holds

102 Chapter 7. Test and Proof

Advanced SPARK

7.7.2 Example #2

The same contracts are useful for test and for proof, so it's useful to develop them for test
initially.

Evaluation: This approach is not correct. In fact, proof requires more contracts that test,
as each subprogram is analyzed separately. But these are a superset of the contracts used
for test.

7.7.3 Example #3

Assertions need to be activated explicitly at compilation for getting the corresponding run-
time checks.

Evaluation: This approach is correct. Use switch -gnata to activate assertions.

7.7.4 Example #4

When assertions are activated, loop invariants are checked to be inductive on specific ex-
ecutions.

Evaluation: This approach is not correct. Loop invariants are checked dynamically exactly
like assertions. The inductive property is not something that can be tested.

7.7.5 Example #5

Procedure P which is proved calls function T which is tested. To make sure the assumptions
used in the proof of P are verified, we should check dynamically the precondition of T.

Evaluation: This approach is not correct. The precondition is proved at the call site of T in
P. But we should check dynamically the postcondition of T.

7.7.6 Example #6

Function T which is tested calls procedure P which is proved. To make sure the assumptions
used in the proof of P are verified, we should check dynamically the precondition of P.

Evaluation: This approach is correct. The proof of P depends on its precondition being
satisfied at every call.

7.7.7 Example #7

However procedure P (proved) and function T (tested) call each other, we can verify the
assumptions of proof by checking dynamically all preconditions and postconditions during
tests of T.

Evaluation: This approach is not correct. That covers only functional contracts. There are
other assumptions made in proof, related to initialization, effects and non-aliasing.

7.7. Test Examples / Pitfalls 103

Advanced SPARK

7.7.8 Example #8

Proof is superior to test in every aspect.

Evaluation: This approach is not correct. Maybe for the aspects Pre and Post. But not
in other aspects of verification: non-functional verification (memory footprint, execution
time), match with hardware, integration in environment... And testing can even be exhaus-
tive sometimes!

7.7.9 Example #9

When mixing test and proof at different levels, proof should be done at unit level and test
at integration level.

Evaluation: This approach is not correct. This is only one possibility that has been used
in practice. The opposite could be envisioned: test low-level functionalities (e.g. crypto in
hardware), and prove correct integration of low-level functionalities.

7.7.10 Example #10

There are many ways to mix test and proof, and yours may not be in these slides.

Evaluation: This approach is correct. YES! (and show me yours)

104 Chapter 7. Test and Proof

	Subprogram Contracts
	Subprogram Contracts in Ada 2012 and SPARK 2014
	Dynamic Execution of Subprogram Contracts
	Dynamic Behavior when Subprogram Contracts Fail
	Precondition
	Postcondition
	Contract Cases
	Attribute 'Old
	Implication and Equivalence
	Reasoning by Cases
	Universal and Existential Quantification
	Expression Functions
	Code Examples / Pitfalls
	Example #1
	Example #2
	Example #3
	Example #4
	Example #5
	Example #6
	Example #7
	Example #8
	Example #9
	Example #10

	Type Contracts
	Type Contracts in Ada 2012 and SPARK 2014
	Static and Dynamic Predicates
	Static Predicate
	Dynamic Predicate
	Restrictions on Types With Dynamic Predicate
	Dynamic Checking of Predicates
	Temporary Violations of the Dynamic Predicate

	Type Invariant
	Dynamic Checking of Type Invariants

	Inheritance of Predicates and Type Invariants
	Other Useful Gotchas on Predicates and Type Invariants
	Default Initial Condition
	Code Examples / Pitfalls
	Example #1
	Example #2
	Example #3
	Example #4
	Example #5
	Example #6
	Example #7
	Example #8
	Example #9
	Example #10

	Systems Programming
	Type Contracts in Ada 2012 and SPARK 2014
	Systems Programming – What is it?
	Systems Programming – How can SPARK help?
	Systems Programming – A trivial example
	Volatile Variables and Volatile Types
	Flavors of Volatile Variables
	Using Async_Readers / Async_Writers
	Using Effective_Reads / Effective_Writes
	Combinations of Flavors of Volatile Variables

	Constraints on Volatile Variables
	Constraints on Volatile Functions
	State Abstraction on Volatile Variables
	Constraints on Address Attribute
	Can something be known of volatile variables?
	Other Concerns in Systems Programming
	Code Examples / Pitfalls
	Example #1
	Example #2
	Example #3
	Example #4
	Example #5
	Example #6
	Example #7
	Example #8
	Example #9
	Example #10

	Concurrency
	Concurrency ≠ Parallelism
	Concurrent Program Structure in Ada
	The problems with concurrency
	Ravenscar – the Ada solution to concurrency problems
	Concurrent Program Structure in Ravenscar
	Ravenscar – the SPARK solution to concurrency problems
	Concurrency – A trivial example
	Setup for using concurrency in SPARK
	Tasks in Ravenscar
	Communication Between Tasks in Ravenscar
	Protected Objects in Ravenscar
	Protected Communication with Procedures & Functions
	Blocking Communication with Entries
	Relaxed Constraints on Entries with Extended Ravenscar
	Interrupt Handlers in Ravenscar
	Other Communications Between Tasks in SPARK
	Data and Flow Dependencies of Tasks
	State Abstraction over Synchronized Variables
	Synchronized Abstract State in the Standard Library
	Code Examples / Pitfalls
	Example #1
	Example #2
	Example #3
	Example #4
	Example #5
	Example #6
	Example #7
	Example #8
	Example #9
	Example #10

	Object-oriented Programming
	What is Object Oriented Programming?
	Prototypes and Scopes in SPARK
	Classes in SPARK
	Methods in SPARK
	Dynamic dispatching in SPARK
	A trivial example
	The problems with dynamic dispatching

	LSP – the SPARK solution to dynamic dispatching problems
	Verification of dynamic dispatching calls
	Class-wide contracts and data abstraction
	Class-wide contracts, data abstraction and overriding

	Dynamic semantics of class-wide contracts
	Redispatching and Extensions_Visible aspect
	Code Examples / Pitfalls
	Example #1
	Example #2
	Example #3
	Example #4
	Example #5
	Example #6
	Example #7
	Example #8
	Example #9
	Example #10

	Ghost Code
	What is ghost code?
	Ghost code – A trivial example
	Ghost variables – aka auxiliary variables
	Ghost variables – non-interference rules
	Ghost statements
	Ghost procedures
	Ghost functions
	Imported ghost functions
	Ghost packages and ghost abstract state
	Executing ghost code
	Examples of use
	Encoding a state automaton
	Expressing useful lemmas
	Specifying an API through a model

	Extreme proving with ghost code – red black trees in SPARK
	Positioning ghost code in proof techniques
	Code Examples / Pitfalls
	Example #1
	Example #2
	Example #3
	Example #4
	Example #5
	Example #6
	Example #7
	Example #8
	Example #9
	Example #10

	Test and Proof
	Various Combinations of Tests and Proofs
	Test (be)for(e) Proof
	Activating Run-time Checks
	Activating Assertions
	Activating Ghost Code

	Test for Proof
	Overflow Checking Mode

	Test alongside Proof
	Checking Proof Assumptions
	Rules for Defining the Boundary
	Special Compilation Switches

	Test as Proof
	Feasibility of Exhaustive Testing

	Test on top of Proof
	Combining Unit Proof and Integration Test

	Test Examples / Pitfalls
	Example #1
	Example #2
	Example #3
	Example #4
	Example #5
	Example #6
	Example #7
	Example #8
	Example #9
	Example #10

