
Bug Free Coding with SPARK
Ada

Release 2024-09

Robert Tice

Sep 08, 2024

CONTENTS:

1 Let's Build a Stack 3
1.1 Background . 3
1.2 Input Format . 6
1.3 Constraints . 6
1.4 Output Format . 6
1.5 Sample Input . 6
1.6 Sample Output . 6

i

ii

Bug Free Coding with SPARK Ada

Warning

This version of the website contains UNPUBLISHED contents. Please do not share it
externally!

Copyright © 2018 – 2022, AdaCore
This book is published under a CC BY-SA license, which means that you can copy, redis-
tribute, remix, transform, and build upon the content for any purpose, even commercially,
as long as you give appropriate credit, provide a link to the license, and indicate if changes
were made. If you remix, transform, or build upon the material, you must distribute your
contributions under the same license as the original. You can find license details on this
page1

Workshop project: Learn to write maintainable bug-free code with SPARK Ada.
This document was written by Robert Tice.

Note

The code examples in this course use an 80-column limit, which is a typical limit for Ada
code. Note that, on devices with a small screen size, some code examples might be
difficult to read.

1 http://creativecommons.org/licenses/by-sa/4.0

CONTENTS: 1

http://creativecommons.org/licenses/by-sa/4.0
http://creativecommons.org/licenses/by-sa/4.0

Bug Free Coding with SPARK Ada

2 CONTENTS:

CHAPTER

ONE

LET'S BUILD A STACK

In this lab we will build a stack data structure and use the SPARK provers to find the errors
in the below implementation.

1.1 Background

So, what is a stack?
A stack is like a pile of dishes...

1. The pile starts out empty.
2. You add (push) a new plate (data) to the stack by placing it on the top of the pile.
3. To get plates (data) out, you take the one off the top of the pile (pop).
4. Out stack has a maximum height (size) of 9 dishes

Pushing items onto the stack
Here's what should happen if we pushed the string MLH onto the stack.

3

Bug Free Coding with SPARK Ada

The list starts out empty. Each time we push a character onto the stack, Last increments
by 1.
Popping items from the stack

4 Chapter 1. Let's Build a Stack

Bug Free Coding with SPARK Ada

Here's what should happen if we popped 2 characters off our stack & then clear it.

Note that pop and clear don't unset the Storage array's elements, they just change the
value of Last.

1.1. Background 5

Bug Free Coding with SPARK Ada

1.2 Input Format

N inputs will be read from stdin/console as inputs, C to the stack.

1.3 Constraints

1 <= N <= 1000
C is any character. Characters d and p will be special characters corresponding to the below
commands:
p => Pops a character off the stack
d => Prints the current characters in the stack

1.4 Output Format

If the stack currently has the characters "M", "L", and "H" then the program should print
the stack like this:
[M, L, H]

1.5 Sample Input

M L H d p d p d p d

1.6 Sample Output

[M, L, H] [M, L] [M] []

Listing 1: stack.ads
1 package Stack with SPARK_Mode => On is
2

3 procedure Push (V : Character)
4 with Pre => not Full,
5 Post => Size = Size'Old + 1;
6

7 procedure Pop (V : out Character)
8 with Pre => not Empty,
9 Post => Size = Size'Old - 1;
10

11 procedure Clear
12 with Post => Size = 0;
13

14 function Top return Character
15 with Post => Top'Result = Tab(Last);
16

17 Max_Size : constant := 9;
(continues on next page)

6 Chapter 1. Let's Build a Stack

Bug Free Coding with SPARK Ada

(continued from previous page)
18 -- The stack size.
19

20 Last : Integer range 0 .. Max_Size := 0;
21 -- Indicates the top of the stack. When 0 the stack is empty.
22

23 Tab : array (1 .. Max_Size) of Character;
24 -- The stack. We push and pop pointers to Values.
25

26 function Full return Boolean is (Last = Max_Size);
27

28 function Empty return Boolean is (Last < 1);
29

30 function Size return Integer is (Last);
31

32 end Stack;

Listing 2: stack.adb
1 package body Stack with SPARK_Mode => On is
2

3 -----------
4 -- Clear --
5 -----------
6

7 procedure Clear
8 is
9 begin
10 Last := Tab'First;
11 end Clear;
12

13 ----------
14 -- Push --
15 ----------
16

17 procedure Push (V : Character)
18 is
19 begin
20 Tab (Last) := V;
21 end Push;
22

23 ---------
24 -- Pop --
25 ---------
26

27 procedure Pop (V : out Character)
28 is
29 begin
30 Last := Last - 1;
31 V := Tab (Last);
32 end Pop;
33

34 ---------
35 -- Top --
36 ---------
37

38 function Top return Character
39 is
40 begin
41 return Tab (1);
42 end Top;
43

(continues on next page)

1.6. Sample Output 7

Bug Free Coding with SPARK Ada

(continued from previous page)
44 end Stack;

Listing 3: main.adb
1 with Ada.Command_Line; use Ada.Command_Line;
2 with Ada.Text_IO; use Ada.Text_IO;
3 with Stack; use Stack;
4

5 procedure Main with SPARK_Mode => Off
6 is
7

8 -----------
9 -- Debug --
10 -----------
11

12 procedure Debug
13 is
14 begin
15

16 if not Stack.Empty then
17

18 Put ("[");
19 for I in Stack.Tab'First .. Stack.Size - 1 loop
20 Put (Stack.Tab (I) & ", ");
21 end loop;
22 Put_Line (Stack.Tab (Stack.Size) & "]");
23 else
24 Put_Line ("[]");
25 end if;
26

27 end Debug;
28

29 S : Character;
30

31 begin
32

33 ----------
34 -- Main --
35 ----------
36

37 for Arg in 1 .. Argument_Count loop
38 if Argument (Arg)'Length /= 1 then
39 Put_Line (Argument (Arg) & " is an invalid input to the stack.");
40 else
41 S := Argument (Arg)(Argument (Arg)'First);
42

43 if S = 'd' then
44 Debug;
45 elsif S = 'p' then
46 if not Stack.Empty then
47 Stack.Pop (S);
48 else
49 Put_Line ("Nothing to Pop, Stack is empty!");
50 end if;
51 else
52 if not Stack.Full then
53 Stack.Push (S);
54 else
55 Put_Line ("Could not push '" & S & "', Stack is full!");
56 end if;
57 end if;

(continues on next page)

8 Chapter 1. Let's Build a Stack

Bug Free Coding with SPARK Ada

(continued from previous page)
58 end if;
59

60 end loop;
61

62 end Main;

1.6. Sample Output 9

	Let's Build a Stack
	Background
	Input Format
	Constraints
	Output Format
	Sample Input
	Sample Output

