Concurrency
Todo
Update with comparison to new C++11 concurrency features
Tasks
Java and Ada both provide support for concurrency in the language. The C++ language has added a concurrency facility in its most recent revision, C++11, but we are assuming that most C++ programmers are not (yet) familiar with these new features. We thus provide the following mock API for C++ which is similar to the Java Thread
class:
class Thread {
public:
virtual void run (); // code to execute
void start (); // starts a thread and then call run ()
void join (); // waits until the thread is finished
};
Each of the following examples will display the 26 letters of the alphabet twice, using two concurrent threads/tasks. Since there is no synchronization between the two threads of control in any of the examples, the output may be interspersed.
[Ada]
procedure Main is -- implicitly called by the environment task
task My_Task;
task body My_Task is
begin
for I in 'A' .. 'Z' loop
Put_Line (I);
end loop;
end My_Task;
begin
for I in 'A' .. 'Z' loop
Put_Line (I);
end loop;
end Main;
[C++]
class MyThread : public Thread {
public:
void run () {
for (char i = 'A'; i <= 'Z'; ++i) {
cout << i << endl;
}
}
};
int main (int argc, char ** argv) {
MyThread myTask;
myTask.start ();
for (char i = 'A'; i <= 'Z'; ++i) {
cout << i << endl;
}
myTask.join ();
return 0;
}
[Java]
public class Main {
static class MyThread extends Thread {
public void run () {
for (char i = 'A'; i <= 'Z'; ++i) {
System.out.println (i);
}
}
}
public static void main (String args) {
MyThread myTask = new MyThread ();
myTask.start ();
for (char i = 'A'; i <= 'Z'; ++i) {
System.out.println (i);
}
myTask.join ();
}
}
Any number of Ada tasks may be declared in any declarative region. A task declaration is very similar to a procedure or package declaration. They all start automatically when control reaches the begin
. A block will not exit until all sequences of statements defined within that scope, including those in tasks, have been completed.
A task type is a generalization of a task object; each object of a task type has the same behavior. A declared object of a task type is started within the scope where it is declared, and control does not leave that scope until the task has terminated.
An Ada task type is somewhat analogous to a Java Thread
subclass, but in Java the instances of such a subclass are always dynamically allocated. In Ada an instance of a task type may either be declared or dynamically allocated.
Task types can be parametrized; the parameter serves the same purpose as an argument to a constructor in Java. The following example creates 10 tasks, each of which displays a subset of the alphabet contained between the parameter and the 'Z'
Character. As with the earlier example, since there is no synchronization among the tasks, the output may be interspersed depending on the implementation's task scheduling algorithm.
[Ada]
task type My_Task (First : Character);
task body My_Task is
begin
for I in First .. 'Z' loop
Put_Line (I);
end loop;
end My_Task;
procedure Main is
Tab : array (0 .. 9) of My_Task ('G');
begin
null;
end Main;
[C++]
class MyThread : public Thread {
public:
char first;
void run () {
for (char i = first; i <= 'Z'; ++i) {
cout << i << endl;
}
}
};
int main (int argc, char ** argv) {
MyThread tab [10];
for (int i = 0; i < 9; ++i) {
tab [i].first = 'G';
tab [i].start ();
}
for (int i = 0; i < 9; ++i) {
tab [i].join ();
}
return 0;
}
[Java]
public class MyThread extends Thread {
public char first;
public MyThread (char first){
this.first = first;
}
public void run () {
for (char i = first; i <= 'Z'; ++i) {
cout << i << endl;
}
}
}
public class Main {
public static void main (String args) {
MyThread [] tab = new MyThread [10];
for (int i = 0; i < 9; ++i) {
tab [i] = new MyThread ('G');
tab [i].start ();
}
for (int i = 0; i < 9; ++i) {
tab [i].join ();
}
}
}
In Ada a task may be allocated on the heap as opposed to the stack. The task will then start as soon as it has been allocated, and terminates when its work is completed. This model is probably the one that's the most similar to Java:
[Ada]
type Ptr_Task is access My_Task;
procedure Main is
T : Ptr_Task;
begin
T := new My_Task ('G');
end Main;
[C++]
int main (int argc, char ** argv) {
MyThread * t = new MyThread ();
t->first = 'G';
t->start ();
return 0;
}
[Java]
public class Main {
public static void main (String args) {
MyThread t = new MyThread ('G');
t.start ();
}
}
Rendezvous
Todo
Check if rendezvous is supported in Java or C++ through an API
A rendezvous is a synchronization between two tasks, allowing them to exchange data and coordinate execution. Ada's rendezvous facility cannot be modeled with C++ or Java without complex machinery. Therefore, this section will just show examples written in Ada.
Let's consider the following example:
with Ada.Text_IO; use Ada.Text_IO;
procedure Main is
task After is
entry Go;
end After ;
task body After is
begin
accept Go;
Put_Line ("After");
end After;
begin
Put_Line ("Before");
After.Go;
end;
The Go
entry
declared in After
is the external interface to the task. In the task body, the accept
statement causes the task to wait for a call on the entry. This particular entry
and accept
pair doesn't do much more than cause the task to wait until Main
calls After.Go
. So, even though the two tasks start simultaneously and execute independently, they can coordinate via Go
. Then, they both continue execution independently after the rendezvous.
The entry
/accept
pair can take/pass parameters, and the accept
statement can contain a sequence of statements; while these statements are executed, the caller is blocked.
Let's look at a more ambitious example. The rendezvous below accepts parameters and executes some code:
with Ada.Text_IO; use Ada.Text_IO;
procedure Main is
task After is
entry Go (Text : String);
end After ;
task body After is
begin
accept Go (Text : String) do
Put_Line ("After: " & Text);
end Go;
end After;
begin
Put_Line ("Before");
After.Go ("Main");
end;
In the above example, the Put_Line
is placed in the accept
statement. Here's a possible execution trace, assuming a uniprocessor:
At the
begin
ofMain
, taskAfter
is started and the main procedure is suspended.After
reaches theaccept
statement and is suspended, since there is no pending call on theGo
entry.The main procedure is awakened and executes the
Put_Line
invocation, displaying the string "Before".The main procedure calls the
Go
entry. SinceAfter
is suspended on itsaccept
statement for this entry, the call succeeds.The main procedure is suspended, and the task
After
is awakened to execute the body of theaccept
statement. The actual parameter"Main"
is passed to theaccept
statement, and thePut_Line
invocation is executed. As a result, the string"After: Main"
is displayed.When the
accept
statement is completed, both theAfter
task and the main procedure are ready to run. Suppose that theMain
procedure is given the processor. It reaches itsend
, but the local taskAfter
has not yet terminated. The main procedure is suspended.The
After
task continues, and terminates since it is at itsend
. The main procedure is resumed, and it too can terminate since its dependent task has terminated.
The above description is a conceptual model; in practice the implementation can perform various optimizations to avoid unnecessary context switches.
Selective Rendezvous
The accept statement by itself can only wait for a single event (call) at a time. The select
statement allows a task to listen for multiple events simultaneously, and then to deal with the first event to occur. This feature is illustrated by the task below, which maintains an integer value that is modified by other tasks that call Increment
, Decrement
, and Get
:
task Counter is
entry Get (Result : out Integer);
entry Increment;
entry Decrement;
end Counter;
task body Counter is
Value : Integer := 0;
begin
loop
select
accept Increment do
Value := Value + 1;
end Increment;
or
accept Decrement do
Value := Value - 1;
end Decrement;
or
accept Get (Result : out Integer) do
Result := Value;
end Get;
or
delay 60.0; -- delay 1 minute
exit;
end select;
end loop;
end Counter;
When the task's statement flow reaches the select
, it will wait for all four events — three entries and a delay — in parallel. If the delay of one minute is exceeded, the task will execute the statements following the delay
statement (and in this case will exit the loop, in effect terminating the task). The accept bodies for the Increment
, Decrement
, or Get
entries will be otherwise executed as they're called. These four sections of the select
statement are mutually exclusive: at each iteration of the loop, only one will be invoked. This is a critical point; if the task had been written as a package, with procedures for the various operations, then a "race condition" could occur where multiple tasks simultaneously calling, say, Increment
, cause the value to only get incremented once. In the tasking version, if multiple tasks simultaneously call Increment
then only one at a time will be accepted, and the value will be incremented by each of the tasks when it is accepted.
More specifically, each entry has an associated queue of pending callers. If a task calls one of the entries and Counter
is not ready to accept the call (i.e., if Counter
is not suspended at the select
statement) then the calling task is suspended, and placed in the queue of the entry that it is calling. From the perspective of the Counter
task, at any iteration of the loop there are several possibilities:
There is no call pending on any of the entries. In this case
Counter
is suspended. It will be awakened by the first of two events: a call on one of its entries (which will then be immediately accepted), or the expiration of the one minute delay (whose effect was noted above).There is a call pending on exactly one of the entries. In this case control passes to the
select
branch with anaccept
statement for that entry. The choice of which caller to accept, if more than one, depends on the queuing policy, which can be specified via a pragma defined in the Real-Time Systems Annex of the Ada standard; the default is First-In First-Out.There are calls pending on more than one entry. In this case one of the entries with pending callers is chosen, and then one of the callers is chosen to be de-queued (the choices depend on the queueing policy).
Protected Objects
Although the rendezvous may be used to implement mutually exclusive access to a shared data object, an alternative (and generally preferable) style is through a protected object, an efficiently implementable mechanism that makes the effect more explicit. A protected object has a public interface (its protected operations) for accessing and manipulating the object's components (its private part). Mutual exclusion is enforced through a conceptual lock on the object, and encapsulation ensures that the only external access to the components are through the protected operations.
Two kinds of operations can be performed on such objects: read-write operations by procedures or entries, and read-only operations by functions. The lock mechanism is implemented so that it's possible to perform concurrent read operations but not concurrent write or read/write operations.
Let's reimplement our earlier tasking example with a protected object called Counter
:
protected Counter is
function Get return Integer;
procedure Increment;
procedure Decrement;
private
Value : Integer := 0;
end Counter;
protected body Counter is
function Get return Integer is
begin
return Value;
end Get;
procedure Increment is
begin
Value := Value + 1;
end Increment;
procedure Decrement is
begin
Value := Value - 1;
end Decrement;
end Counter;
Having two completely different ways to implement the same paradigm might seem complicated. However, in practice the actual problem to solve usually drives the choice between an active structure (a task) or a passive structure (a protected object).
A protected object can be accessed through prefix notation:
Counter.Increment;
Counter.Decrement;
Put_Line (Integer'Image (Counter.Get));
A protected object may look like a package syntactically, since it contains declarations that can be accessed externally using prefix notation. However, the declaration of a protected object is extremely restricted; for example, no public data is allowed, no types can be declared inside, etc. And besides the syntactic differences, there is a critical semantic distinction: a protected object has a conceptual lock that guarantees mutual exclusion; there is no such lock for a package.
Like tasks, it's possible to declare protected types that can be instantiated several times:
declare
protected type Counter is
-- as above
end Counter;
protected body Counter is
-- as above
end Counter;
C1 : Counter;
C2 : Counter;
begin
C1.Increment;
C2.Decrement;
...
end;
Protected objects and types can declare a procedure-like operation known as an "entry". An entry is somewhat similar to a procedure but includes a so-called barrier condition that must be true in order for the entry invocation to succeed. Calling a protected entry is thus a two step process: first, acquire the lock on the object, and then evaluate the barrier condition. If the condition is true then the caller will execute the entry body. If the condition is false, then the caller is placed in the queue for the entry, and relinquishes the lock. Barrier conditions (for entries with non-empty queues) are reevaluated upon completion of protected procedures and protected entries.
Here's an example illustrating protected entries: a protected type that models a binary semaphore / persistent signal.
protected type Binary_Semaphore is
entry Wait;
procedure Signal;
private
Signaled : Boolean := False;
end Binary_Semaphore;
protected body Binary_Semaphore is
entry Wait when Signaled is
begin
Signaled := False;
end Wait;
procedure Signal is
begin
Signaled := True;
end Signal;
end Binary_Semaphore;
Ada concurrency features provide much further generality than what's been presented here. For additional information please consult one of the works cited in the References section.